TensorRT-LLMs/tests/unittest/trt/functional/test_sample.py
xiweny 6979afa6f2
test: reorganize tests folder hierarchy (#2996)
1. move TRT path tests to 'trt' folder
2. optimize some import usage
2025-03-27 12:07:53 +08:00

123 lines
4.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
# isort: off
import torch
# isort: on
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('warning')
def ref_categorical_sample(self, probs: torch.Tensor):
probs = probs / probs.sum(-1, keepdim=True)
rand_data = torch.rand(probs.shape[0],
dtype=probs.dtype,
device=probs.device)
cum_probs = probs.cumsum(-1)
samples = (cum_probs >= rand_data.unsqueeze(1)).int().argmax(dim=-1)
# print(samples)
return samples
# @unittest.skip("")
def test_ref_sample(self):
bs = 2
nbins = 10
probs = torch.rand((bs, nbins), dtype=torch.float32)
scaled_probs = probs / probs.sum(-1, keepdim=True)
print(scaled_probs)
samples = []
reps = 20000
for _ in range(reps):
samples.append(self.ref_categorical_sample(probs))
samples = torch.stack(samples).float()
# print(samples[:, 0], samples[:, 1])
hist = []
bins = torch.arange(nbins + 1).float()
for i in range(bs):
h = torch.histogram(samples[:, i], bins=bins).hist
h = h / h.sum(-1)
hist.append(h)
np.testing.assert_allclose(torch.stack(hist), scaled_probs, atol=1e-2)
return
def test_sample(self):
# test data
bs = 2
nbins = 10
probs = torch.rand((bs, nbins), dtype=torch.float32)
scaled_probs = probs / probs.sum(-1, keepdim=True)
print(scaled_probs)
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=probs.shape,
dtype=tensorrt_llm.torch_dtype_to_trt(probs.dtype))
# NOTE: we need rand() here since TRT rand() produces same numbers
rand_data_t = Tensor(name='rand_data',
shape=(bs, ),
dtype=tensorrt_llm.torch_dtype_to_trt(
torch.float32))
outputs = tensorrt_llm.functional.categorical_sample(x, rand_data_t)
outputs.trt_tensor.name = 'output'
network.mark_output(outputs.trt_tensor)
# save onnx
# model_path = 'sample.onnx'
# to_onnx(net.trt_network, model_path)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
samples = []
nreps = 20000
with TrtRunner(build_engine) as runner:
for _ in range(nreps):
# NOTE: we need rand() here since TRT rand() produces same numbers
rand_data = torch.rand((bs, ), dtype=torch.float32)
outputs = runner.infer(feed_dict={
'x': probs.numpy(),
'rand_data': rand_data.numpy(),
})
# print(outputs)
samples.append(torch.tensor(outputs['output']))
# assert False, "PARTIAL"
samples = torch.stack(samples).float()
print(samples)
hist = []
bins = torch.arange(nbins + 1).float()
for i in range(bs):
h = torch.histogram(samples[:, i], bins=bins).hist
h = h / h.sum(-1)
hist.append(h)
print(hist)
# compare diff
np.testing.assert_allclose(torch.stack(hist), scaled_probs, atol=1e-2)
# assert False, "FORCED"
return