mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
118 lines
4.0 KiB
Python
118 lines
4.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
# isort: off
|
|
import torch
|
|
import tensorrt as trt
|
|
# isort: on
|
|
|
|
from parameterized import parameterized
|
|
from utils.util import create_session, run_session, unittest_name_func
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
|
|
class TestFunctional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
@parameterized.expand([('float32', ), ('float16', )],
|
|
name_func=unittest_name_func)
|
|
def test_slice_explicit(self, dtype):
|
|
# test data
|
|
x_shape = (1, 256)
|
|
x_data = torch.rand(x_shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
|
|
device="cuda")
|
|
starts_data = torch.tensor([0, 128]).int()
|
|
sizes_data = torch.tensor([1, 1]).int()
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
|
|
x = Tensor(name='x',
|
|
shape=x_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
starts = Tensor(name='starts', shape=(2, ), dtype=trt.int32)
|
|
|
|
sizes = Tensor(name='sizes', shape=(2, ), dtype=trt.int32)
|
|
|
|
output = tensorrt_llm.functional.slice(x, starts, sizes)
|
|
output.mark_output('output')
|
|
|
|
profile = builder.trt_builder.create_optimization_profile()
|
|
profile.set_shape_input('starts', (0, 128), (0, 128), (0, 128))
|
|
profile.set_shape_input('sizes', (1, 1), (1, 1), (1, 1))
|
|
|
|
# trt run
|
|
session = create_session(builder,
|
|
network,
|
|
precision=dtype,
|
|
optimization_profiles=[profile])
|
|
inputs = {'x': x_data, 'starts': starts_data, 'sizes': sizes_data}
|
|
outputs = run_session(session, inputs)
|
|
|
|
# pytorch run
|
|
ref = x_data[0:1, 128:129]
|
|
|
|
# compare diff
|
|
torch.testing.assert_close(ref, outputs['output'])
|
|
|
|
def test_slice_implicit(self):
|
|
dtype = 'float32'
|
|
x_shape = (256, )
|
|
slice_length = 128
|
|
x_data = torch.rand(x_shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
|
|
device="cuda")
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
|
|
x = Tensor(name='x',
|
|
shape=x_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
starts = tensorrt_llm.functional.constant(
|
|
np.array([0], dtype=np.int32))
|
|
output_length = tensorrt_llm.functional.constant(
|
|
np.array([0] * slice_length, dtype=np.int32))
|
|
sizes = tensorrt_llm.functional.shape(output_length, 0)
|
|
|
|
output = tensorrt_llm.functional.slice(x, starts, sizes.view([1]))
|
|
|
|
output.mark_output('output')
|
|
|
|
# trt run
|
|
session = create_session(builder, network, precision=dtype)
|
|
inputs = {
|
|
'x': x_data,
|
|
}
|
|
outputs = run_session(session, inputs)
|
|
|
|
# pytorch run
|
|
ref = x_data[0:slice_length]
|
|
|
|
# compare diff
|
|
torch.testing.assert_close(ref, outputs['output'])
|