TensorRT-LLMs/tests/unittest/trt/functional/test_split.py
xiweny 6979afa6f2
test: reorganize tests folder hierarchy (#2996)
1. move TRT path tests to 'trt' folder
2. optimize some import usage
2025-03-27 12:07:53 +08:00

84 lines
2.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from parameterized import parameterized
from utils.util import create_session, run_session, unittest_name_func
import tensorrt_llm
from tensorrt_llm import Tensor
class TestSplit(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([
('float32', 0, 4),
('float32', 1, 4),
('float32', -1, 4),
('float32', -2, 4),
('float16', 0, 4),
('float16', 1, 4),
('float16', -1, 4),
('float16', -2, 4),
('float32', 0, [2, 100, 26]),
('float32', 1, [2, 100, 100, 52, 2]),
('float32', -1, [2, 100, 100, 52, 2]),
('float32', -2, [2, 100, 26]),
('float16', 0, [2, 100, 26]),
('float16', 1, [2, 100, 100, 52, 2]),
('float16', -1, [2, 100, 100, 52, 2]),
('float16', -2, [2, 100, 26]),
],
name_func=unittest_name_func)
def test_split(self, dtype, dim, split_size_or_sections):
# test data
x_shape = (128, 256)
x_data = torch.rand(x_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=x_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
outputs = tensorrt_llm.functional.split(x, split_size_or_sections,
dim)
for i in range(len(outputs)):
outputs[i].mark_output(f'output_{i}')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'x': x_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref_outputs = torch.split(x_data, split_size_or_sections, dim)
# compare diff
assert len(outputs.keys()) == len(ref_outputs)
for i in range(len(ref_outputs)):
torch.testing.assert_close(ref_outputs[i], outputs[f'output_{i}'])