TensorRT-LLMs/tests/unittest/trt/functional/test_unbind.py
xiweny 6979afa6f2
test: reorganize tests folder hierarchy (#2996)
1. move TRT path tests to 'trt' folder
2. optimize some import usage
2025-03-27 12:07:53 +08:00

106 lines
3.6 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
# isort: off
import torch
# isort: on
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_unbind_1(self):
# test data
dtype = 'float32'
input_shape = (1, 2, 3)
unbind_dim = 0
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
outputs = input.unbind(unbind_dim)
for i in range(len(outputs)):
outputs[i].name = f'output_{i}'
network.mark_output(outputs[i].trt_tensor)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'input': input_data.numpy(),
})
# pytorch run
refs = input_data.unbind(unbind_dim)
# compare diff
# compare diff
for idx, ref in enumerate(refs):
np.testing.assert_allclose(ref.cpu().numpy(),
outputs[f'output_{idx}'])
def test_unbind_1(self):
# test data
dtype = 'float32'
input_shape = (1, 2, 3)
unbind_dim = 1
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
outputs = input.unbind(unbind_dim)
for i in range(len(outputs)):
outputs[i].name = f'output_{i}'
network.mark_output(outputs[i].trt_tensor)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'input': input_data.numpy(),
})
# pytorch run
refs = input_data.unbind(unbind_dim)
# compare diff
# compare diff
for idx, ref in enumerate(refs):
np.testing.assert_allclose(ref.cpu().numpy(),
outputs[f'output_{idx}'])