TensorRT-LLMs/tests/unittest/trt/functional/test_view.py
xiweny 6979afa6f2
test: reorganize tests folder hierarchy (#2996)
1. move TRT path tests to 'trt' folder
2. optimize some import usage
2025-03-27 12:07:53 +08:00

109 lines
3.6 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
# isort: off
import torch
import tensorrt as trt
# isort: on
from utils.util import create_session, run_session
import tensorrt_llm
from tensorrt_llm import Tensor
class TestView(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_view_static(self):
# test data
dtype = 'float32'
input_shape = (4, 3)
output_shape = (12, 1)
input_data = torch.rand(
input_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.view(input=input,
shape=output_shape)
output.mark_output('output')
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'input': input_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = input_data.view(output_shape)
# compare diff
torch.testing.assert_close(ref, outputs['output'])
def test_view_dynamic(self):
# test data
dtype = 'float32'
input_shape = (4, 3)
output_shape = (2, 6)
input_data = torch.rand(
input_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
shape_data = torch.tensor(output_shape).int()
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
shape = Tensor(name='shape',
shape=(len(input_shape), ),
dtype=trt.int32)
output = tensorrt_llm.functional.view(input=input, shape=shape)
output.mark_output('output')
# trt run
profile = builder.trt_builder.create_optimization_profile()
profile.set_shape_input('shape', output_shape, output_shape,
output_shape)
session = create_session(builder,
network,
precision=dtype,
optimization_profiles=[profile])
inputs = {'input': input_data, 'shape': shape_data}
outputs = run_session(session, inputs)
# pytorch run
ref = input_data.view(output_shape)
# compare diff
torch.testing.assert_close(ref, outputs['output'])