TensorRT-LLMs/examples/customization.html
2026-01-08 05:44:03 +00:00

798 lines
53 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>LLM Common Customizations &#8212; TensorRT LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../_static/styles/nvidia-sphinx-theme.css?v=933278ad" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../_static/config_selector.css?v=e17d8078" />
<link rel="stylesheet" type="text/css" href="../_static/custom.css?v=19d20f17" />
<!-- So that users can add custom icons -->
<script src="../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=65e89d2a"></script>
<script src="../_static/config_selector.js?v=aaf6cd4a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = 'examples/customization';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.2.0rc7';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../_static/favicon.png"/>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.2.0rc7" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l2"><a class="reference internal" href="../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_sparse_attention.html">Sparse Attention</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_kv_cache_offloading.html">KV Cache Offloading</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="aiperf_client.html">Aiperf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="aiperf_client_for_multimodal.html">Aiperf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="curl_responses_client.html">Curl Responses Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_responses_client.html">OpenAI Responses Client</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo_k8s_example.html">Dynamo K8s Example</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-deepseek-r1-on-trtllm.html">Deployment Guide for DeepSeek R1 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-llama3.3-70b-on-trtllm.html">Deployment Guide for Llama3.3 70B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-llama4-scout-on-trtllm.html">Deployment Guide for Llama4 Scout 17B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-gpt-oss-on-trtllm.html">Deployment Guide for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-qwen3-on-trtllm.html">Deployment Guide for Qwen3 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-qwen3-next-on-trtllm.html">Deployment Guide for Qwen3 Next on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-kimi-k2-thinking-on-trtllm.html">Deployment Guide for Kimi K2 Thinking on TensorRT LLM - Blackwell</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../models/supported-models.html">Supported Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../models/adding-new-model.html">Adding a New Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-eval.html">trtllm-eval</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../features/feature-combination-matrix.html">Feature Combination Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/disagg-serving.html">Disaggregated Serving</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/kvcache.html">KV Cache System</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/long-sequence.html">Long Sequences</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/lora.html">LoRA (Low-Rank Adaptation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/overlap-scheduler.html">Overlap Scheduler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/sampling.html">Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/additional-outputs.html">Additional Outputs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/guided-decoding.html">Guided Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/speculative-decoding.html">Speculative Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/checkpoint-loading.html">Checkpoint Loading</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/auto_deploy/auto-deploy.html">AutoDeploy (Beta)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/ray-orchestrator.html">Ray Orchestrator (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/torch_compile_and_piecewise_cuda_graph.html">Torch Compile &amp; Piecewise CUDA Graph</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/helix.html">Helix Parallelism</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/kv-cache-connector.html">KV Cache Connector</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/overview.html">Architecture Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-analysis.html">Performance Analysis</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/dev-containers.html">Using Dev Containers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/api-change.html">LLM API Change Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/kv-transfer.html">Introduction to KV Cache Transmission</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html">Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html">Inference Time Compute Implementation in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html">Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">LLM Common Customizations</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section class="tex2jax_ignore mathjax_ignore" id="llm-common-customizations">
<h1>LLM Common Customizations<a class="headerlink" href="#llm-common-customizations" title="Link to this heading">#</a></h1>
<section id="quantization">
<h2>Quantization<a class="headerlink" href="#quantization" title="Link to this heading">#</a></h2>
<p>TensorRT LLM can quantize the Hugging Face model automatically. By setting the appropriate flags in the <code class="docutils literal notranslate"><span class="pre">LLM</span></code> instance. For example, to perform an Int4 AWQ quantization, the following code triggers the model quantization. Please refer to complete list of <a class="reference external" href="https://nvidia.github.io/TensorRT-LLM/_modules/tensorrt_llm/quantization/mode.html#QuantAlgo">supported flags</a> and acceptable values.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.llmapi</span><span class="w"> </span><span class="kn">import</span> <span class="n">QuantConfig</span><span class="p">,</span> <span class="n">QuantAlgo</span>
<span class="n">quant_config</span> <span class="o">=</span> <span class="n">QuantConfig</span><span class="p">(</span><span class="n">quant_algo</span><span class="o">=</span><span class="n">QuantAlgo</span><span class="o">.</span><span class="n">W4A16_AWQ</span><span class="p">)</span>
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">model</span><span class="o">-</span><span class="nb">dir</span><span class="o">&gt;</span><span class="p">,</span> <span class="n">quant_config</span><span class="o">=</span><span class="n">quant_config</span><span class="p">)</span>
</pre></div>
</div>
</section>
<section id="sampling">
<h2>Sampling<a class="headerlink" href="#sampling" title="Link to this heading">#</a></h2>
<p>SamplingParams can customize the sampling strategy to control LLM generated responses, such as beam search, temperature, and <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/blob/main/tensorrt_llm/llmapi/utils.py#L55-L76">others</a>.</p>
<p>As an example, to enable beam search with a beam size of 4, set the <code class="docutils literal notranslate"><span class="pre">sampling_params</span></code> as follows:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.llmapi</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span><span class="p">,</span> <span class="n">BuildConfig</span>
<span class="n">build_config</span> <span class="o">=</span> <span class="n">BuildConfig</span><span class="p">()</span>
<span class="n">build_config</span><span class="o">.</span><span class="n">max_beam_width</span> <span class="o">=</span> <span class="mi">4</span>
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">,</span> <span class="n">build_config</span><span class="o">=</span><span class="n">build_config</span><span class="p">)</span>
<span class="c1"># Let the LLM object generate text with the default sampling strategy, or</span>
<span class="c1"># you can create a SamplingParams object as well with several fields set manually</span>
<span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">beam_width</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span> <span class="c1"># current limitation: beam_width should be equal to max_beam_width</span>
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="o">&lt;</span><span class="n">prompt</span><span class="o">&gt;</span><span class="p">,</span> <span class="n">sampling_params</span><span class="o">=</span><span class="n">sampling_params</span><span class="p">):</span>
<span class="nb">print</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
</pre></div>
</div>
<p><code class="docutils literal notranslate"><span class="pre">SamplingParams</span></code> manages and dispatches fields to C++ classes including:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://nvidia.github.io/TensorRT-LLM/_cpp_gen/runtime.html#_CPPv4N12tensorrt_llm7runtime14SamplingConfigE">SamplingConfig</a></p></li>
<li><p><a class="reference external" href="https://nvidia.github.io/TensorRT-LLM/_cpp_gen/executor.html#_CPPv4N12tensorrt_llm8executor12OutputConfigE">OutputConfig</a></p></li>
</ul>
<p>Refer to the <a class="reference external" href="https://nvidia.github.io/TensorRT-LLM/llm-api/index.html#tensorrt_llm.llmapi.SamplingParams">class documentation</a> for more details.</p>
</section>
<section id="build-configuration">
<h2>Build Configuration<a class="headerlink" href="#build-configuration" title="Link to this heading">#</a></h2>
<p>Apart from the arguments mentioned above, you can also customize the build configuration with the <code class="docutils literal notranslate"><span class="pre">build_config</span></code> class and other arguments borrowed from the trtllm-build CLI. These build configuration options provide flexibility in building engines for the target hardware and use cases. Refer to the following example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">model</span><span class="o">-</span><span class="n">path</span><span class="o">&gt;</span><span class="p">,</span>
<span class="n">build_config</span><span class="o">=</span><span class="n">BuildConfig</span><span class="p">(</span>
<span class="n">max_num_tokens</span><span class="o">=</span><span class="mi">4096</span><span class="p">,</span>
<span class="n">max_batch_size</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
<span class="n">max_beam_width</span><span class="o">=</span><span class="mi">4</span><span class="p">))</span>
</pre></div>
</div>
<p>Refer to the <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/blob/main/tensorrt_llm/builder.py#L470-L501">buildconfig documentation</a> for more details.</p>
</section>
<section id="runtime-customization">
<h2>Runtime Customization<a class="headerlink" href="#runtime-customization" title="Link to this heading">#</a></h2>
<p>Similar to <code class="docutils literal notranslate"><span class="pre">build_config</span></code>, you can also customize the runtime configuration with the <code class="docutils literal notranslate"><span class="pre">runtime_config</span></code>, <code class="docutils literal notranslate"><span class="pre">peft_cache_config</span></code> or other <a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/blob/main/tensorrt_llm/llmapi/llm_utils.py#L186-L223">arguments</a> borrowed from the Executor APIs. These runtime configuration options provide additional flexibility with respect to KV cache management, GPU memory allocation and so on. Refer to the following example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.llmapi</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">KvCacheConfig</span>
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">,</span>
<span class="n">kv_cache_config</span><span class="o">=</span><span class="n">KvCacheConfig</span><span class="p">(</span>
<span class="n">free_gpu_memory_fraction</span><span class="o">=</span><span class="mf">0.8</span><span class="p">))</span>
</pre></div>
</div>
</section>
<section id="tokenizer-customization">
<h2>Tokenizer Customization<a class="headerlink" href="#tokenizer-customization" title="Link to this heading">#</a></h2>
<p>By default, the LLM API uses transformers <code class="docutils literal notranslate"><span class="pre">AutoTokenizer</span></code>. You can override it with your own tokenizer by passing it when creating the LLM object. Refer to the following example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">,</span> <span class="n">tokenizer</span><span class="o">=&lt;</span><span class="n">my_faster_one</span><span class="o">&gt;</span><span class="p">)</span>
</pre></div>
</div>
<p>The LLM() workflow should use your tokenizer instead.</p>
<p>It is also possible to input token IDs directly without <code class="docutils literal notranslate"><span class="pre">Tokenizers</span></code> with the following code. The code produces token IDs without text because the tokenizer is not used.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">([</span><span class="mi">32</span><span class="p">,</span> <span class="mi">12</span><span class="p">]):</span>
<span class="o">...</span>
</pre></div>
</div>
<section id="disable-tokenizer">
<h3>Disable Tokenizer<a class="headerlink" href="#disable-tokenizer" title="Link to this heading">#</a></h3>
<p>For performance considerations, you can disable the tokenizer by passing <code class="docutils literal notranslate"><span class="pre">skip_tokenizer_init=True</span></code> when creating <code class="docutils literal notranslate"><span class="pre">LLM</span></code>. In this case, <code class="docutils literal notranslate"><span class="pre">LLM.generate</span></code> and <code class="docutils literal notranslate"><span class="pre">LLM.generate_async</span></code> will expect prompt token ids as input. Refer to the following example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="o">&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">([[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">12</span><span class="p">]],</span> <span class="n">skip_tokenizer_init</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="nb">print</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
</pre></div>
</div>
<p>You will get something like:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">RequestOutput</span><span class="p">(</span><span class="n">request_id</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">prompt</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">prompt_token_ids</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">15043</span><span class="p">,</span> <span class="mi">29892</span><span class="p">,</span> <span class="mi">590</span><span class="p">,</span> <span class="mi">1024</span><span class="p">,</span> <span class="mi">338</span><span class="p">],</span> <span class="n">outputs</span><span class="o">=</span><span class="p">[</span><span class="n">CompletionOutput</span><span class="p">(</span><span class="n">index</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">text</span><span class="o">=</span><span class="s1">&#39;&#39;</span><span class="p">,</span> <span class="n">token_ids</span><span class="o">=</span><span class="p">[</span><span class="mi">518</span><span class="p">,</span> <span class="mi">10858</span><span class="p">,</span> <span class="mi">4408</span><span class="p">,</span> <span class="mi">29962</span><span class="p">,</span> <span class="mi">322</span><span class="p">,</span> <span class="mi">306</span><span class="p">,</span> <span class="mi">626</span><span class="p">,</span> <span class="mi">263</span><span class="p">,</span> <span class="mi">518</span><span class="p">,</span> <span class="mi">10858</span><span class="p">,</span> <span class="mi">20627</span><span class="p">,</span> <span class="mi">29962</span><span class="p">,</span> <span class="mi">472</span><span class="p">,</span> <span class="mi">518</span><span class="p">,</span> <span class="mi">10858</span><span class="p">,</span> <span class="mi">6938</span><span class="p">,</span> <span class="mi">1822</span><span class="p">,</span> <span class="mi">306</span><span class="p">,</span> <span class="mi">626</span><span class="p">,</span> <span class="mi">5007</span><span class="p">,</span> <span class="mi">304</span><span class="p">,</span> <span class="mi">4653</span><span class="p">,</span> <span class="mi">590</span><span class="p">,</span> <span class="mi">4066</span><span class="p">,</span> <span class="mi">297</span><span class="p">,</span> <span class="mi">278</span><span class="p">,</span> <span class="mi">518</span><span class="p">,</span> <span class="mi">11947</span><span class="p">,</span> <span class="mi">18527</span><span class="p">,</span> <span class="mi">29962</span><span class="p">,</span> <span class="mi">2602</span><span class="p">,</span> <span class="mi">472</span><span class="p">],</span> <span class="n">cumulative_logprob</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">logprobs</span><span class="o">=</span><span class="p">[])],</span> <span class="n">finished</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p>Note that the <code class="docutils literal notranslate"><span class="pre">text</span></code> field in <code class="docutils literal notranslate"><span class="pre">CompletionOutput</span></code> is empty since the tokenizer is deactivated.</p>
</section>
</section>
<section id="generation">
<h2>Generation<a class="headerlink" href="#generation" title="Link to this heading">#</a></h2>
<section id="asyncio-based-generation">
<h3>Asyncio-Based Generation<a class="headerlink" href="#asyncio-based-generation" title="Link to this heading">#</a></h3>
<p>With the LLM API, you can also perform asynchronous generation with the <code class="docutils literal notranslate"><span class="pre">generate_async</span></code> method. Refer to the following example:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="n">model</span><span class="o">=&lt;</span><span class="n">llama_model_path</span><span class="o">&gt;</span><span class="p">)</span>
<span class="k">async</span> <span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate_async</span><span class="p">(</span><span class="o">&lt;</span><span class="n">prompt</span><span class="o">&gt;</span><span class="p">,</span> <span class="n">streaming</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="nb">print</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
</pre></div>
</div>
<p>When the <code class="docutils literal notranslate"><span class="pre">streaming</span></code> flag is set to <code class="docutils literal notranslate"><span class="pre">True</span></code>, the <code class="docutils literal notranslate"><span class="pre">generate_async</span></code> method will return a generator that yields each token as soon as it is available. Otherwise, it returns a generator that wait for and yields only the final results.</p>
</section>
<section id="future-style-generation">
<h3>Future-Style Generation<a class="headerlink" href="#future-style-generation" title="Link to this heading">#</a></h3>
<p>The result of the <code class="docutils literal notranslate"><span class="pre">generate_async</span></code> method is a <a class="reference external" href="https://docs.python.org/3/library/asyncio-future.html#asyncio.Future">Future-like</a> object, it doesnt block the thread unless the <code class="docutils literal notranslate"><span class="pre">.result()</span></code> is called.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># This will not block the main thread</span>
<span class="n">generation</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate_async</span><span class="p">(</span><span class="o">&lt;</span><span class="n">prompt</span><span class="o">&gt;</span><span class="p">)</span>
<span class="c1"># Do something else here</span>
<span class="c1"># call .result() to explicitly block the main thread and wait for the result when needed</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">generation</span><span class="o">.</span><span class="n">result</span><span class="p">()</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre">.result()</span></code> method works like the <a class="reference external" href="https://docs.python.org/zh-cn/3/library/asyncio-future.html#asyncio.Future.result">result</a> method in the Python Future, you can specify a timeout to wait for the result.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">output</span> <span class="o">=</span> <span class="n">generation</span><span class="o">.</span><span class="n">result</span><span class="p">(</span><span class="n">timeout</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
<p>There is an async version, where the <code class="docutils literal notranslate"><span class="pre">.aresult()</span></code> is used.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">generation</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate_async</span><span class="p">(</span><span class="o">&lt;</span><span class="n">prompt</span><span class="o">&gt;</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="k">await</span> <span class="n">generation</span><span class="o">.</span><span class="n">aresult</span><span class="p">()</span>
</pre></div>
</div>
</section>
</section>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#quantization">Quantization</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#sampling">Sampling</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#build-configuration">Build Configuration</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#runtime-customization">Runtime Customization</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#tokenizer-customization">Tokenizer Customization</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#disable-tokenizer">Disable Tokenizer</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#generation">Generation</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#asyncio-based-generation">Asyncio-Based Generation</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#future-style-generation">Future-Style Generation</a></li>
</ul>
</li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Your Privacy Choices</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on January 04, 2026.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/a65b0d4">a65b0d4</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>