mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
191 lines
6.5 KiB
Python
191 lines
6.5 KiB
Python
import argparse
|
|
import os
|
|
import time
|
|
import traceback
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
from typing import Union
|
|
|
|
from transformers import AutoConfig
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm._utils import release_gc
|
|
from tensorrt_llm.logger import logger
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models import (BertForQuestionAnswering,
|
|
BertForSequenceClassification, BertModel,
|
|
RobertaForQuestionAnswering,
|
|
RobertaForSequenceClassification, RobertaModel)
|
|
from tensorrt_llm.models.modeling_utils import QuantConfig
|
|
from tensorrt_llm.quantization import QuantAlgo
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model',
|
|
required=True,
|
|
choices=[
|
|
'BertModel',
|
|
'BertForQuestionAnswering',
|
|
'BertForSequenceClassification',
|
|
'RobertaModel',
|
|
'RobertaForQuestionAnswering',
|
|
'RobertaForSequenceClassification',
|
|
])
|
|
parser.add_argument('--model_dir', type=str, default=None)
|
|
parser.add_argument('--tp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way tensor parallelism size')
|
|
parser.add_argument('--pp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way pipeline parallelism size')
|
|
parser.add_argument('--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['float32', 'float16'])
|
|
parser.add_argument('--output_dir',
|
|
type=str,
|
|
default='tllm_checkpoint',
|
|
help='The path to save the TensorRT-LLM checkpoint')
|
|
parser.add_argument(
|
|
'--workers',
|
|
type=int,
|
|
default=1,
|
|
help='The number of workers for converting checkpoint in parallel')
|
|
# Quantization args
|
|
parser.add_argument("--use_fp8",
|
|
action="store_true",
|
|
default=False,
|
|
help="Enable FP8 per-tensor quantization")
|
|
parser.add_argument(
|
|
'--quant_ckpt_path',
|
|
type=str,
|
|
default=None,
|
|
help='Path of a quantized model checkpoint in .safetensors format')
|
|
parser.add_argument(
|
|
'--calib_dataset',
|
|
type=str,
|
|
default='ccdv/cnn_dailymail',
|
|
help=
|
|
"The huggingface dataset name or the local directory of the dataset for calibration."
|
|
)
|
|
|
|
parser.add_argument('--log_level', type=str, default='info')
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
def args_to_quant_config(args: argparse.Namespace) -> QuantConfig:
|
|
'''return config dict with quantization info based on the command line args
|
|
'''
|
|
quant_config = QuantConfig()
|
|
|
|
if args.use_fp8:
|
|
quant_config.quant_algo = QuantAlgo.FP8
|
|
return quant_config
|
|
|
|
|
|
def convert_and_save_hf(args):
|
|
model_dir = args.model_dir
|
|
|
|
world_size = args.tp_size * args.pp_size
|
|
#TODO: add override_fields if needed
|
|
# Need to convert the cli args to the kay-value pairs and override them in the generate config dict.
|
|
# Ideally these fields will be moved out of the config and pass them into build API, keep them here for compatibility purpose for now,
|
|
# before the refactor is done.
|
|
|
|
#TODO: add fp8 support later
|
|
quant_config = args_to_quant_config(args)
|
|
|
|
hf_config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
|
|
assert hf_config is not None, "Failed to load huggingface config, please check!"
|
|
|
|
def convert_and_save_rank(args, rank, tllm_class: Union[
|
|
BertModel,
|
|
RobertaModel,
|
|
BertForQuestionAnswering,
|
|
RobertaForQuestionAnswering,
|
|
BertForSequenceClassification,
|
|
RobertaForSequenceClassification,
|
|
]):
|
|
mapping = Mapping(
|
|
world_size=world_size,
|
|
rank=rank,
|
|
tp_size=args.tp_size,
|
|
pp_size=args.pp_size,
|
|
)
|
|
tik = time.time()
|
|
tllm_bert = tllm_class.from_hugging_face(
|
|
model_dir,
|
|
args.dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
)
|
|
print(f'Total time of reading and converting {time.time()-tik} s')
|
|
tik = time.time()
|
|
tllm_bert.save_checkpoint(args.output_dir, save_config=(rank == 0))
|
|
del tllm_bert
|
|
print(f'Total time of saving checkpoint {time.time()-tik} s')
|
|
|
|
tllm_class = globals()[f'{args.model}']
|
|
if not args.model == hf_config.architectures[0]:
|
|
logger.warning(
|
|
"The model doesn't match the architecture in huggingface config.")
|
|
|
|
execute(args.workers, [convert_and_save_rank] * world_size, args,
|
|
tllm_class)
|
|
release_gc()
|
|
|
|
|
|
def execute(workers, func, args,
|
|
tllm_class: Union[BertModel, RobertaModel, BertForQuestionAnswering,
|
|
RobertaForQuestionAnswering,
|
|
BertForSequenceClassification,
|
|
RobertaForSequenceClassification]):
|
|
if workers == 1:
|
|
for rank, f in enumerate(func):
|
|
f(args, rank, tllm_class)
|
|
else:
|
|
with ThreadPoolExecutor(max_workers=workers) as p:
|
|
futures = [
|
|
p.submit(f, args, rank, tllm_class)
|
|
for rank, f in enumerate(func)
|
|
]
|
|
exceptions = []
|
|
for future in as_completed(futures):
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
exceptions.append(e)
|
|
assert len(
|
|
exceptions
|
|
) == 0, "Checkpoint conversion failed, please check error log."
|
|
|
|
|
|
def main():
|
|
print(tensorrt_llm.__version__)
|
|
args = parse_arguments()
|
|
logger.set_level(args.log_level)
|
|
|
|
assert ((args.tp_size <= 2)
|
|
and (args.pp_size == 1)), "For now we only support TP = 2!"
|
|
tik = time.time()
|
|
|
|
if not os.path.exists(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
|
|
assert args.model_dir is not None
|
|
convert_and_save_hf(args)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Total time of converting checkpoints: {t}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|