TensorRT-LLMs/cpp/include/tensorrt_llm/common/cudaUtils.h
Yihan Wang 9df4dad3b6
[None][fix] Introduce inline namespace to avoid symbol collision (#9541)
Signed-off-by: Yihan Wang <yihwang@nvidia.com>
2025-12-12 23:32:15 +08:00

1445 lines
46 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/config.h"
#include "tensorrt_llm/common/cudaBf16Wrapper.h"
#include "tensorrt_llm/common/cudaDriverWrapper.h"
#include "tensorrt_llm/common/cudaFp8Utils.h"
#if ENABLE_FP4
#include <cuda_fp4.h>
#endif
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/tllmException.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cublasLt.h>
#include <cublas_v2.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <driver_types.h>
#include <fstream>
#include <iomanip>
#include <memory>
#include <optional>
#include <sstream>
#include <string>
#include <unordered_map>
#ifndef _WIN32 // Linux
#include <sys/sysinfo.h>
#endif // not WIN32
#include <vector>
#ifdef _WIN32 // Windows
#include <windows.h>
#undef ERROR // A Windows header file defines ERROR as 0, but it's used in our logger.h enum. Logging breaks without
// this undef.
#endif // WIN32
TRTLLM_NAMESPACE_BEGIN
namespace common
{
// workspace for cublas gemm : 32MB
#define CUBLAS_WORKSPACE_SIZE 33554432
typedef struct __align__(4)
{
half x, y, z, w;
}
half4;
/* **************************** type definition ***************************** */
enum CublasDataType
{
FLOAT_DATATYPE = 0,
HALF_DATATYPE = 1,
BFLOAT16_DATATYPE = 2,
INT8_DATATYPE = 3,
FP8_DATATYPE = 4
};
enum TRTLLMCudaDataType
{
FP32 = 0,
FP16 = 1,
BF16 = 2,
INT8 = 3,
FP8 = 4
};
enum class OperationType
{
FP32,
FP16,
BF16,
INT8,
FP8
};
/* **************************** debug tools ********************************* */
static char const* _cudaGetErrorEnum(cudaError_t error)
{
return cudaGetErrorString(error);
}
static char const* _cudaGetErrorEnum(cublasStatus_t error)
{
switch (error)
{
case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
case CUBLAS_STATUS_LICENSE_ERROR: return "CUBLAS_STATUS_LICENSE_ERROR";
}
return "<unknown>";
}
template <typename T>
void check(T ptr, char const* const func, char const* const file, int const line)
{
if (ptr)
{
throw TllmException(file, line,
fmtstr("[TensorRT-LLM][ERROR] CUDA runtime error in %s: %s", func, _cudaGetErrorEnum(ptr)).c_str());
}
}
template <typename T>
void checkEx(
T ptr, std::initializer_list<T> const& validReturns, char const* const func, char const* const file, int const line)
{
if (std::all_of(std::begin(validReturns), std::end(validReturns), [&ptr](T const& t) { return t != ptr; }))
{
throw TllmException(file, line,
fmtstr("[TensorRT-LLM][ERROR] CUDA runtime error in %s: %s", func, _cudaGetErrorEnum(ptr)).c_str());
}
}
#define check_cuda_error(val) check((val), #val, __FILE__, __LINE__)
#define check_cuda_error_2(val, file, line) check((val), #val, file, line)
inline std::optional<bool> isCudaLaunchBlocking()
{
thread_local bool firstCall = true;
thread_local std::optional<bool> result = std::nullopt;
if (!firstCall)
{
char const* env = std::getenv("CUDA_LAUNCH_BLOCKING");
if (env != nullptr && std::string(env) == "1")
{
result = true;
}
else
{
result = false;
}
firstCall = false;
}
return result;
}
inline bool isCapturing(cudaStream_t stream)
{
cudaStreamCaptureStatus status;
check_cuda_error(cudaStreamIsCapturing(stream, &status));
return status == cudaStreamCaptureStatus::cudaStreamCaptureStatusActive;
}
inline bool doCheckError(cudaStream_t stream)
{
auto const cudaLaunchBlocking = isCudaLaunchBlocking();
if (cudaLaunchBlocking.has_value() && cudaLaunchBlocking.value())
{
return !isCapturing(stream);
}
#ifndef NDEBUG
// Debug builds will sync when we're not capturing unless explicitly
// disabled.
bool const checkError = cudaLaunchBlocking.value_or(!isCapturing(stream));
#else
bool const checkError = cudaLaunchBlocking.value_or(false);
#endif
return checkError;
}
inline void syncAndCheck(cudaStream_t stream, char const* const file, int const line)
{
if (doCheckError(stream))
{
cudaStreamSynchronize(stream);
check(cudaGetLastError(), "cudaGetLastError", file, line);
}
}
#define sync_check_cuda_error(stream) tensorrt_llm::common::syncAndCheck(stream, __FILE__, __LINE__)
#define PRINT_FUNC_NAME_() \
do \
{ \
std::cout << "[TensorRT-LLM][CALL] " << __FUNCTION__ << " " << std::endl; \
} while (0)
// clang-format off
template<typename T> struct packed_type;
template <> struct packed_type<float> { using type = float; }; // we don't need to pack float by default
template <> struct packed_type<half> { using type = half2; };
#ifdef ENABLE_BF16
template<>
struct packed_type<__nv_bfloat16> {
using type = __nv_bfloat162;
};
#endif
#ifdef ENABLE_FP8
template<>
struct packed_type<__nv_fp8_e4m3> {
using type = __nv_fp8x2_e4m3;
};
#endif
template<typename T> struct num_elems;
template <> struct num_elems<float> { static constexpr int value = 1; };
template <> struct num_elems<float2> { static constexpr int value = 2; };
template <> struct num_elems<float4> { static constexpr int value = 4; };
template <> struct num_elems<half> { static constexpr int value = 1; };
template <> struct num_elems<half2> { static constexpr int value = 2; };
#ifdef ENABLE_BF16
template <> struct num_elems<__nv_bfloat16> { static constexpr int value = 1; };
template <> struct num_elems<__nv_bfloat162> { static constexpr int value = 2; };
#endif
#ifdef ENABLE_FP8
template <> struct num_elems<__nv_fp8_e4m3> { static constexpr int value = 1; };
template <> struct num_elems<__nv_fp8x2_e4m3> { static constexpr int value = 2; };
#endif
template<typename T, int num> struct packed_as;
template<typename T> struct packed_as<T, 1> { using type = T; };
template<> struct packed_as<half, 2> { using type = half2; };
template<> struct packed_as<float, 2> { using type = float2; };
template<> struct packed_as<int8_t, 2> { using type = int16_t; };
template<> struct packed_as<int32_t, 2> { using type = int2; };
template<> struct packed_as<half2, 1> { using type = half; };
template<> struct packed_as<float2, 1> { using type = float; };
#ifdef ENABLE_BF16
template<> struct packed_as<__nv_bfloat16, 2> { using type = __nv_bfloat162; };
template<> struct packed_as<__nv_bfloat162, 1> { using type = __nv_bfloat16; };
#endif
#ifdef ENABLE_FP8
template<> struct packed_as<__nv_fp8_e4m3, 2> { using type = __nv_fp8x2_e4m3; };
template<> struct packed_as<__nv_fp8x2_e4m3, 1> { using type = __nv_fp8_e4m3; };
template<> struct packed_as<__nv_fp8_e5m2, 2> { using type = __nv_fp8x2_e5m2; };
template<> struct packed_as<__nv_fp8x2_e5m2, 1> { using type = __nv_fp8_e5m2; };
#endif
inline __device__ float2 operator*(float2 a, float2 b) { return make_float2(a.x * b.x, a.y * b.y); }
inline __device__ float2 operator+(float2 a, float2 b) { return make_float2(a.x + b.x, a.y + b.y); }
inline __device__ float2 operator-(float2 a, float2 b) { return make_float2(a.x - b.x, a.y - b.y); }
inline __device__ float2 operator*(float2 a, float b) { return make_float2(a.x * b, a.y * b); }
inline __device__ float2 operator+(float2 a, float b) { return make_float2(a.x + b, a.y + b); }
inline __device__ float2 operator-(float2 a, float b) { return make_float2(a.x - b, a.y - b); }
// clang-format on
template <typename T>
struct CudaDataType
{
};
template <>
struct CudaDataType<float>
{
static constexpr cudaDataType_t value = cudaDataType::CUDA_R_32F;
};
template <>
struct CudaDataType<half>
{
static constexpr cudaDataType_t value = cudaDataType::CUDA_R_16F;
};
#ifdef ENABLE_BF16
template <>
struct CudaDataType<__nv_bfloat16>
{
static constexpr cudaDataType_t value = cudaDataType::CUDA_R_16BF;
};
#endif
/// @brief Get the SM version of the current device.
/// @param queryRealSmArch Whether to query the real SM architecture. example usage: use real sm arch when do LUT tuning
/// and use fake sm arch when reuse sm120 code on sm121 devices.
/// @return The SM version of the current device.
inline int getSMVersion(bool queryRealSmArch = false)
{
int device{-1};
check_cuda_error(cudaGetDevice(&device));
int sm_major = 0;
int sm_minor = 0;
check_cuda_error(cudaDeviceGetAttribute(&sm_major, cudaDevAttrComputeCapabilityMajor, device));
check_cuda_error(cudaDeviceGetAttribute(&sm_minor, cudaDevAttrComputeCapabilityMinor, device));
int sm = sm_major * 10 + sm_minor;
if (sm == 121 && !queryRealSmArch)
{
return 120;
}
return sm;
}
inline bool isSM100Family()
{
int const sm = getSMVersion();
return sm == 100 || sm == 103; // To be continued...
}
inline int getDevice()
{
int deviceID{0};
check_cuda_error(cudaGetDevice(&deviceID));
return deviceID;
}
inline int getDeviceCount()
{
int count{0};
check_cuda_error(cudaGetDeviceCount(&count));
return count;
}
/// @brief Identifies the memory type of the given pointer.
template <typename T>
cudaMemoryType getPtrCudaMemoryType(T* ptr)
{
cudaPointerAttributes attributes{};
check_cuda_error(cudaPointerGetAttributes(&attributes, ptr));
return attributes.type;
}
/// Get the memory info
/// \return The free and total amount of memory in bytes
inline std::tuple<size_t, size_t> getDeviceMemoryInfo(bool const useUvm)
{
if (useUvm)
{
size_t freeSysMem = 0;
size_t totalSysMem = 0;
#ifndef _WIN32 // Linux
struct sysinfo info
{
};
sysinfo(&info);
totalSysMem = info.totalram * info.mem_unit;
freeSysMem = info.freeram * info.mem_unit;
#else // Windows
MEMORYSTATUSEX memInfo;
memInfo.dwLength = sizeof(memInfo);
GlobalMemoryStatusEx(&memInfo);
totalSysMem = memInfo.ullTotalPhys;
freeSysMem = memInfo.ullAvailPhys;
#endif // WIN32
TLLM_LOG_INFO("Using UVM based system memory for KV cache, total memory %0.2f GB, available memory %0.2f GB",
((double) totalSysMem / 1e9), ((double) freeSysMem / 1e9));
return {freeSysMem, totalSysMem};
}
size_t free = 0;
size_t total = 0;
check_cuda_error(cudaMemGetInfo(&free, &total));
TLLM_LOG_DEBUG("Using GPU memory for KV cache, total memory %0.2f GB, available memory %0.2f GB",
((double) total / 1e9), ((double) free / 1e9));
return {free, total};
}
/// @brief Gets the memory allocation granularity for the current device.
///
/// @return size_t The size of the smallest difference in memory size supported by the current device.
inline size_t getAllocationGranularity()
{
auto const currentDevice = getDevice();
::CUmemAllocationProp prop = {};
prop.type = ::CU_MEM_ALLOCATION_TYPE_PINNED;
prop.location.type = ::CU_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = currentDevice;
prop.requestedHandleTypes = ::CU_MEM_HANDLE_TYPE_NONE;
// Get the minimum granularity supported for allocation with cuMemCreate()
size_t granularity = 0;
TLLM_CU_CHECK(cuMemGetAllocationGranularity(&granularity, &prop, CU_MEM_ALLOC_GRANULARITY_MINIMUM));
return granularity;
}
inline int getMultiProcessorCount()
{
int nSM{0};
int deviceID{0};
check_cuda_error(cudaGetDevice(&deviceID));
check_cuda_error(cudaDeviceGetAttribute(&nSM, cudaDevAttrMultiProcessorCount, deviceID));
return nSM;
}
inline int getMaxSharedMemoryPerSM()
{
int nByteMaxSharedMemoryPerSM{0};
int deviceID{0};
check_cuda_error(cudaGetDevice(&deviceID));
check_cuda_error(
cudaDeviceGetAttribute(&nByteMaxSharedMemoryPerSM, cudaDevAttrMaxSharedMemoryPerMultiprocessor, deviceID));
return nByteMaxSharedMemoryPerSM;
}
inline int getMaxSharedMemoryPerBlockOptin()
{
int nByteMaxSharedMemoryPerBlockOptin{0};
int deviceID{0};
check_cuda_error(cudaGetDevice(&deviceID));
check_cuda_error(
cudaDeviceGetAttribute(&nByteMaxSharedMemoryPerBlockOptin, cudaDevAttrMaxSharedMemoryPerBlockOptin, deviceID));
return nByteMaxSharedMemoryPerBlockOptin;
}
template <typename T>
inline int getMaxActiveBlocksPerSM(T kernel, int blockSize, size_t dynamicSMemSize)
{
static std::unordered_map<T, int> cache;
auto it = cache.find(kernel);
if (it != cache.end())
{
return it->second;
}
int numBlocks;
check_cuda_error(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocks, kernel, blockSize, dynamicSMemSize));
cache[kernel] = numBlocks;
return numBlocks;
}
template <typename T1, typename T2>
inline size_t divUp(T1 const& a, T2 const& b)
{
auto const tmp_a = static_cast<size_t>(a);
auto const tmp_b = static_cast<size_t>(b);
return (tmp_a + tmp_b - 1) / tmp_b;
}
inline int roundUp(int a, int b)
{
return divUp(a, b) * b;
}
template <typename T, typename U, typename = std::enable_if_t<std::is_integral<T>::value>,
typename = std::enable_if_t<std::is_integral<U>::value>>
auto constexpr ceilDiv(T numerator, U denominator)
{
return (numerator + denominator - 1) / denominator;
}
template <typename T>
void printArrayInfo(T const* ptr, uint64_t nElement = 1, std::string name = "", bool const bPrintElement = false)
{
if (ptr == nullptr)
{
TLLM_LOG_WARNING("%s is an nullptr, skip!", name.c_str());
return;
}
cudaDeviceSynchronize();
check_cuda_error(cudaGetLastError());
bool const isDevicePtr = (getPtrCudaMemoryType(ptr) == cudaMemoryTypeDevice);
size_t sizeInByte = sizeof(T) * nElement;
TLLM_LOG_TRACE("addr=%p, location=%s, sizeof(T)=%lu, nElement=%d, sizeInByte=%lu\n", ptr,
(isDevicePtr ? "Device" : "Host"), sizeof(T), nElement, sizeInByte);
T* tmp = const_cast<T*>(ptr);
std::vector<T> tmpVec; // For device pointer
if (isDevicePtr)
{
tmpVec.resize(nElement);
tmp = tmpVec.data(); // Note `data()` is not supported for vector<bool>
check_cuda_error(cudaMemcpy(tmp, ptr, sizeInByte, cudaMemcpyDeviceToHost));
cudaDeviceSynchronize();
}
size_t nInf = 0;
size_t nNaN = 0;
size_t nZero = 0;
double sum = 0.0;
double sqrSum = 0.0;
double absSum = 0.0;
float allMax = -1.0e6f;
float allMin = 1.0e6f;
float allSad = 0.0f; // Sum Abs of Difference, to distinguish A and its transpose
float old = 0.0f;
for (uint64_t i = 0; i < nElement; i++)
{
float val = (float) tmp[i];
if (std::isinf(val))
{
nInf++;
continue;
}
if (std::isnan(val))
{
nNaN++;
continue;
}
nZero += (val == 0.0f);
sum += val;
sqrSum += val * val;
absSum += expf(val);
allMax = std::max(allMax, val);
allMin = std::min(allMin, val);
allSad += abs(val - old);
old = val;
}
float avg = sum / nElement;
float std = sqrtf(sqrSum / nElement - avg * avg);
TLLM_LOG_INFO("%s", name.c_str());
TLLM_LOG_INFO("size=%u, nInf=%zu, nNaN=%zu, nZero=%zu", nElement, nInf, nNaN, nZero);
TLLM_LOG_INFO("avg=%f, absSum: %f, std=%f, max=%f, min=%f, sad=%f", avg, absSum, std, allMax, allMin, allSad);
if (bPrintElement)
{
uint64_t constexpr nHead = 5;
std::stringstream ss;
ss << std::setw(10) << std::fixed << std::setprecision(3);
for (uint64_t i = 0; i < std::min(nElement, nHead); ++i)
{
ss << (float) tmp[i] << ", ";
}
if (nElement > nHead)
{
ss << " ... ";
for (uint64_t i = nElement - nHead; i < nElement; ++i)
{
ss << (float) tmp[i] << ", ";
}
}
TLLM_LOG_INFO("%s", ss.str().c_str());
}
cudaDeviceSynchronize();
check_cuda_error(cudaGetLastError());
}
template void printArrayInfo(float const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
template void printArrayInfo(half const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
#ifdef ENABLE_BF16
template void printArrayInfo(__nv_bfloat16 const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
#endif
#ifdef ENABLE_FP8
template void printArrayInfo(__nv_fp8_e4m3 const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
#endif
#ifdef ENABLE_FP4
template void printArrayInfo(__nv_fp4_e2m1 const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
#endif
template void printArrayInfo(uint32_t const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
template void printArrayInfo(uint64_t const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
template void printArrayInfo(int const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
template void printArrayInfo(uint8_t const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
template <typename T>
void printToStream(T const* ptr, int const nElement, FILE* strm)
{
bool const split_rows = (strm == stdout);
if (ptr == nullptr)
{
TLLM_LOG_WARNING("Nullptr, skip!\n");
return;
}
std::vector<T> tmp(nElement, 0);
check_cuda_error(cudaMemcpy(tmp.data(), ptr, sizeof(T) * nElement, cudaMemcpyDeviceToHost));
for (int i = 0; i < nElement; ++i)
{
fprintf(strm, "%f, ", static_cast<float>(tmp[i]));
if (split_rows && ((i + 1) % 10) == 0)
fprintf(strm, "\n");
}
if (!split_rows || (nElement % 10) != 0)
{
fprintf(strm, "\n");
}
}
template <typename T>
void printToScreen(T const* ptr, int const nElement)
{
printToStream(ptr, nElement, stdout);
}
template <typename T>
void print2dToStream(T const* ptr, int const nRow, int const nCol, int const nStride, FILE* strm)
{
if (ptr == nullptr)
{
TLLM_LOG_WARNING("Nullptr, skip!\n");
return;
}
for (int ri = 0; ri < nRow; ++ri)
{
T const* tmp = ptr + ri * nStride;
printToStream(tmp, nCol, strm);
}
fprintf(strm, "\n");
}
template <typename T>
void print2dToScreen(T const* ptr, int const nRow, int const nCol, int const nStride)
{
print2dToStream(ptr, nRow, nCol, nStride, stdout);
}
template <typename T>
void print2dToFile(std::string fname, T const* ptr, int const nRow, int const nCol, int const nStride)
{
FILE* fp = fopen(fname.c_str(), "wt");
if (fp != nullptr)
{
print2dToStream(ptr, nRow, nCol, nStride, fp);
fclose(fp);
}
}
__host__ __device__ inline void print_float_(float x)
{
printf("%7.3f ", x);
}
__host__ __device__ inline void print_element_(float x)
{
print_float_(x);
}
__host__ __device__ inline void print_element_(half x)
{
print_float_((float) x);
}
#ifdef ENABLE_BF16
__host__ __device__ inline void print_element_(__nv_bfloat16 x)
{
print_float_((float) x);
}
#endif
#ifdef ENABLE_FP8
__host__ __device__ inline void print_element_(__nv_fp8_e4m3 x)
{
print_float_((float) x);
}
#endif
__host__ __device__ inline void print_element_(bool ui)
{
printf("%7" PRIu32 " ", (unsigned int) ui);
}
__host__ __device__ inline void print_element_(uint8_t ui)
{
printf("%7" PRIu32 " ", (unsigned int) ui);
}
__host__ __device__ inline void print_element_(uint32_t ul)
{
printf("%7" PRIu32 " ", ul);
}
__host__ __device__ inline void print_element_(uint64_t ull)
{
printf("%7" PRIu64 " ", ull);
}
__host__ __device__ inline void print_element_(int32_t il)
{
printf("%7" PRId32 " ", il);
}
__host__ __device__ inline void print_element_(int64_t ill)
{
printf("%7" PRId64 " ", ill);
}
template <typename T>
__host__ __device__ inline void print_elements(T const* ptr, int nRow, int nCol, int nStride)
{
for (int iRow = -1; iRow < nRow; ++iRow)
{
if (iRow >= 0)
{
printf("%07d|", iRow);
}
else
{
printf(" |"); // heading row
}
for (int iCol = 0; iCol < nCol; iCol += 1)
{
if (iRow >= 0)
{
print_element_(ptr[iRow * nStride + iCol]);
}
else
{
printf("%7d|", iCol); // heading colume
}
}
printf("\n");
}
printf("\n");
}
template <typename T>
inline void printMatrix(T const* ptr, int nRow, int nCol, int nStride)
{
// `nRow` is length of row dimension
// `nStride` is length of column dimension
// `nCol` (<= nStride) is length for print per row
if (ptr == nullptr)
{
TLLM_LOG_WARNING("Nullptr, skip!\n");
return;
}
cudaDeviceSynchronize();
check_cuda_error(cudaGetLastError());
bool const isDevicePtr = (getPtrCudaMemoryType(ptr) == cudaMemoryTypeDevice);
size_t sizeInByte = sizeof(T) * nRow * nStride;
TLLM_LOG_TRACE("addr=%p, location=%s, sizeof(T)=%lu, nRow=%d, nStride=%d, sizeInByte=%lu\n", ptr,
(isDevicePtr ? "Device" : "Host"), sizeof(T), nRow, nStride, sizeInByte);
if (isDevicePtr)
{
std::vector<T> tmpVec;
tmpVec.resize(nRow * nStride);
T* tmp = tmpVec.data(); // Note `data()` is not supported for vector<bool>
check_cuda_error(cudaMemcpy(tmp, ptr, sizeInByte, cudaMemcpyDeviceToHost));
cudaDeviceSynchronize();
check_cuda_error(cudaGetLastError());
print_elements(tmp, nRow, nCol, nStride);
}
else
{
print_elements(ptr, nRow, nCol, nStride);
}
}
template void printMatrix(float const* ptr, int nRow, int nCol, int nStride);
template void printMatrix(half const* ptr, int nRow, int nCol, int nStride);
#ifdef ENABLE_BF16
template void printMatrix(__nv_bfloat16 const* ptr, int nRow, int nCol, int nStride);
#endif
#ifdef ENABLE_FP8
template void printMatrix(__nv_fp8_e4m3 const* ptr, int nRow, int nCol, int nStride);
#endif
template void printMatrix(uint32_t const* ptr, int nRow, int nCol, int nStride);
template void printMatrix(uint64_t const* ptr, int nRow, int nCol, int nStride);
template void printMatrix(int const* ptr, int nRow, int nCol, int nStride);
template void printMatrix(uint8_t const* ptr, int nRow, int nCol, int nStride);
template <typename T>
__device__ inline void printMatrixDevice(T const* ptr, int nRow, int nCol, int nStride)
{
// `nRow` is length of row dimension
// `nStride` is length of column dimension
// `nCol` (<= nStride) is length for print per row
// Can be called inside kernels by one single thread
if (ptr == nullptr)
{
printf("Nullptr, skip!\n");
return;
}
size_t sizeInByte = sizeof(T) * nRow * nStride;
printf("addr=%p, sizeof(T)=%lu, nRow=%d, nStride=%d, sizeInByte=%lu\n", ptr, sizeof(T), nRow, nStride, sizeInByte);
print_elements(ptr, nRow, nCol, nStride);
}
template __device__ void printMatrixDevice(float const* ptr, int nRow, int nCol, int nStride);
template __device__ void printMatrixDevice(half const* ptr, int nRow, int nCol, int nStride);
#ifdef ENABLE_BF16
template __device__ void printMatrixDevice(__nv_bfloat16 const* ptr, int nRow, int nCol, int nStride);
#endif
#ifdef ENABLE_FP8
template __device__ void printMatrixDevice(__nv_fp8_e4m3 const* ptr, int nRow, int nCol, int nStride);
#endif
template __device__ void printMatrixDevice(uint32_t const* ptr, int nRow, int nCol, int nStride);
template __device__ void printMatrixDevice(uint64_t const* ptr, int nRow, int nCol, int nStride);
template __device__ void printMatrixDevice(int const* ptr, int nRow, int nCol, int nStride);
template __device__ void printMatrixDevice(uint8_t const* ptr, int nRow, int nCol, int nStride);
#ifndef CUDA_CALL
#define CUDA_CALL(answer) \
{ \
gpuAssert((answer), __FILE__, __LINE__); \
}
inline void gpuAssert(cudaError_t code, char const* file, int line, bool abort = true)
{
if (code != cudaSuccess)
{
fprintf(stderr, "CUDA error: %s @ %s:%d\n", cudaGetErrorString(code), file, line);
if (abort)
exit(code);
}
}
inline void gpuAssert(CUresult code, char const* file, int line, bool abort = true)
{
if (code != CUresult::CUDA_SUCCESS)
{
char const* buf = "Unknown error";
assert(cuGetErrorString(code, &buf) == CUresult::CUDA_SUCCESS);
fprintf(stderr, "Driver API error: %s @ %s:%d\n", buf, file, line);
if (abort)
exit(code);
}
}
#endif
template <typename T>
struct UpperType;
template <>
struct UpperType<int8_t>
{
using Type = int;
};
template <>
struct UpperType<uint32_t>
{
using Type = uint32_t;
};
template <>
struct UpperType<int>
{
using Type = int;
};
template <>
struct UpperType<__nv_bfloat16>
{
using Type = double;
};
template <>
struct UpperType<half>
{
using Type = double;
};
template <>
struct UpperType<float>
{
using Type = double;
};
extern "C"
{
__device__ uint32_t __nvvm_get_smem_pointer(void* ptr);
}
__forceinline__ __device__ void issue_stas(uint32_t dist_barrier_ptr, uint32_t dist_buffer_ptr, uint32_t d0)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDACC_VER_MAJOR__ >= 12))
asm volatile("st.async.weak.shared::cluster.mbarrier::complete_tx::bytes.b32 [%0], %2, [%1];\n\t"
:
: "r"(dist_buffer_ptr), "r"(dist_barrier_ptr), "r"(d0));
#endif
}
__forceinline__ __device__ void issue_stas(uint32_t dist_barrier_ptr, uint32_t dist_buffer_ptr, uint64_t d0)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDACC_VER_MAJOR__ >= 12))
asm volatile("st.async.weak.shared::cluster.mbarrier::complete_tx::bytes.b64 [%0], %2, [%1];\n\t"
:
: "r"(dist_buffer_ptr), "r"(dist_barrier_ptr), "l"(d0));
#endif
}
__forceinline__ __device__ void issue_stas(
uint32_t dist_barrier_ptr, uint32_t dist_buffer_ptr, uint32_t d0, uint32_t d1)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDACC_VER_MAJOR__ >= 12))
asm volatile("st.async.weak.shared::cluster.mbarrier::complete_tx::bytes.v2.b32 [%0], {%2, %3}, [%1];\n\t"
:
: "r"(dist_buffer_ptr), "r"(dist_barrier_ptr), "r"(d0), "r"(d1));
#endif
}
__forceinline__ __device__ void issue_stas(
uint32_t dist_barrier_ptr, uint32_t dist_buffer_ptr, uint32_t d0, uint32_t d1, uint32_t d2, uint32_t d3)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDACC_VER_MAJOR__ >= 12))
asm volatile("st.async.shared::cluster.mbarrier::complete_tx::bytes.v4.b32 [%0], {%2, %3, %4, %5}, [%1];\n\t"
:
: "r"(dist_buffer_ptr), "r"(dist_barrier_ptr), "r"(d0), "r"(d1), "r"(d2), "r"(d3));
#endif
}
inline __device__ uint32_t elect_one_sync()
{
uint32_t pred = 0;
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && (__CUDACC_VER_MAJOR__ >= 12))
#if (defined(__CUDA_ARCH_FEAT_SM90_ALL))
uint32_t laneid = 0;
asm volatile(
"\n\
{\n\
.reg .b32 %rx;\n\
.reg .pred %px;\n\
elect.sync %rx|%px, %2;\n\
@%px mov.s32 %1, 1;\n\
mov.s32 %0, %rx;\n\
}\n\
"
: "+r"(laneid), "+r"(pred)
: "r"(0xFFFFFFFF));
#endif
#endif
return pred;
}
__forceinline__ __device__ uint32_t get_smem_pointer(void const* ptr)
{
return __nvvm_get_smem_pointer(const_cast<void*>(ptr));
}
__forceinline__ __device__ void bar_create(void* bar_ptr, int init_count)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
unsigned smem_ptr = get_smem_pointer(bar_ptr);
asm volatile(
"{\n\t"
"mbarrier.init.shared.b64 [%1], %0; \n\t"
"}"
:
: "r"(init_count), "r"(smem_ptr));
#endif
}
struct Arrive_wait
{
public:
__forceinline__ __device__ Arrive_wait()
{
bar_base_ = NULL;
}
__forceinline__ __device__ Arrive_wait(uint64_t* bar_base, int id = 0)
{
bar_base_ = bar_base;
id_ = id;
}
__forceinline__ __device__ int bar_peek(int id, unsigned int bar_phase)
{
uint32_t result32{};
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
auto* bar_ptr = bar_base_ + id;
unsigned smem_ptr = get_smem_pointer(bar_ptr);
asm volatile(
"{\n\t"
".reg .pred P1; \n\t"
"mbarrier.try_wait.parity.shared.b64 P1, [%1], %2; \n\t"
"selp.b32 %0, 1, 0, P1; \n\t"
"}"
: "=r"(result32)
: "r"(smem_ptr), "r"(bar_phase));
#endif
return result32;
}
__forceinline__ __device__ int bar_peek(int id, unsigned int bar_phase, int pred)
{
uint32_t result32{};
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
auto* bar_ptr = bar_base_ + id;
unsigned smem_ptr = get_smem_pointer(bar_ptr);
asm volatile(
"{\n\t"
".reg .pred P1; \n\t"
".reg .pred P2;\n\t"
"setp.eq.u32 P2, %3, 1;\n\t"
"@P2 mbarrier.try_wait.parity.shared.b64 P1, [%1], %2; \n\t"
"selp.b32 %0, 1, 0, P1; \n\t"
"}"
: "=r"(result32)
: "r"(smem_ptr), "r"(bar_phase), "r"(pred));
#endif
return result32;
}
__forceinline__ __device__ void bar_wait(int id, unsigned int bar_phase)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
auto* bar_ptr = bar_base_ + id;
unsigned smem_ptr = get_smem_pointer(bar_ptr);
asm volatile(
"{\n\t"
".reg .pred P1; \n\t"
"LAB_WAIT: \n\t"
"mbarrier.try_wait.parity.acquire.cta.shared::cta.b64 P1, [%0], %1; \n\t"
"@P1 bra.uni DONE; \n\t"
"bra.uni LAB_WAIT; \n\t"
"DONE: \n\t"
"}"
:
: "r"(smem_ptr), "r"(bar_phase));
#endif
}
__forceinline__ __device__ void bar_arrive_dsmem(int const& id)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
auto* bar_ptr = bar_base_ + id;
asm volatile(
"{\n\t"
"mbarrier.arrive.b64 _, [%0];\n\t"
"}"
:
: "l"(bar_ptr));
#endif
}
__forceinline__ __device__ void bar_arrive_dsmem(int const& id, uint32_t const& pred)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
asm volatile(
"{\n\t"
" .reg .pred p;\n\t"
" .reg .s64 addr;\n\t"
" .reg .b64 tmp;\n\t"
" setp.eq.u32 p, %2, 1;\n\t"
" mul.wide.s32 tmp, %0, 8;\n\t"
" add.s64 addr, tmp, %1;\n\t"
"@p mbarrier.arrive.b64 _, [addr];\n\t"
"}"
:
: "r"(id), "l"(bar_base_), "r"(pred));
#endif
}
// Sets up the base address for arrival with the correct ctaid in cga
__forceinline__ __device__ void set_bar_base_dsmem(uint32_t const& cta_id)
{
bar_base_ = reinterpret_cast<uint64_t*>(
(reinterpret_cast<uintptr_t>(bar_base_) & 0xFFFFFFFFF0FFFFFFULL) + (cta_id << 24));
}
__forceinline__ __device__ void bar_arrive_normal(int id, bool flag = true)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
if (flag == true)
{
uint64_t* bar_ptr = reinterpret_cast<uint64_t*>(bar_base_ + id);
unsigned smem_ptr = get_smem_pointer(bar_ptr);
asm volatile(
"{\n\t"
".reg .b64 state; \n\t"
"mbarrier.arrive.shared.b64 state, [%0];\n\t"
"}"
:
: "r"(smem_ptr));
}
#endif
}
__forceinline__ __device__ void bar_arrive_set_transactioncnt(int id, int expected_copy_bytes)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
auto* bar_ptr = bar_base_ + id;
unsigned smem_ptr = get_smem_pointer(bar_ptr);
asm volatile(
"{\n\t"
"mbarrier.arrive.expect_tx.shared.b64 _, [%0], %1; \n\t"
"}"
:
: "r"(smem_ptr), "r"(expected_copy_bytes));
#endif
}
__forceinline__ __device__ void bar_arrive_set_transactioncnt(int id, int expected_copy_bytes, uint32_t pred)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
auto* bar_ptr = bar_base_ + id;
unsigned smem_ptr = get_smem_pointer(bar_ptr);
asm volatile(
"{\n\t"
".reg .pred p;\n\t"
"setp.eq.u32 p, %2, 1;\n\t"
"@p mbarrier.arrive.expect_tx.shared.b64 _, [%0], %1; \n\t"
"}"
:
: "r"(smem_ptr), "r"(expected_copy_bytes), "r"(pred));
#endif
}
__forceinline__ __device__ uint64_t* bar_base()
{
return bar_base_;
}
__forceinline__ __device__ uint64_t* get_bar_addr(int id)
{
return bar_base_ + id;
}
private:
// smem barrier base pointer
uint64_t* bar_base_;
// barrier id
int id_;
};
__forceinline__ __device__ void cga_sync()
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
asm volatile("barrier.cluster.sync;\n" : :);
#endif
}
__forceinline__ __device__ void cga_arrive()
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
asm volatile("barrier.cluster.arrive.aligned;\n" : :);
#endif
}
__forceinline__ __device__ void cga_wait()
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
asm volatile("barrier.cluster.wait.aligned;\n" : :);
#endif
}
inline __device__ void fence_view_async_shared()
{
// only compiles on sm90+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 900
asm volatile("fence.proxy.async.shared::cta;\n" : :);
#endif
}
template <typename T>
__forceinline__ __device__ T* get_DSMEM_ptr(T* localAddress, uint32_t destCtaId)
{
T* dsmemAddress
= reinterpret_cast<T*>(((unsigned long long int) localAddress & 0xFFFFFFFFF0FFFFFFULL) + (destCtaId << 24));
return dsmemAddress;
}
template <typename T>
__forceinline__ __device__ void write_DSMEM_Address(T* localAddress, uint32_t destCtaId, T val)
{
T* dsmemAddress = get_DSMEM_ptr(localAddress, destCtaId);
*dsmemAddress = val;
}
__forceinline__ __device__ void arrive_barrier(uint64_t* p_barrier, uint32_t arrive_cnt = 1)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
asm volatile("{mbarrier.arrive.shared.b64 _, [%0],%1;\n\t}" : : "l"(p_barrier), "r"(arrive_cnt));
#endif
}
__forceinline__ __device__ void arrive_DSMEM_barrier(uint64_t* p_barrier, uint32_t ctaid)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
uint64_t* p_barrier_remote = get_DSMEM_ptr(p_barrier, ctaid);
asm volatile("{mbarrier.arrive.b64 _, [%0];\n\t}" : : "l"(p_barrier_remote));
#endif
}
__forceinline__ __device__ void arrive_DSMEM_barrier_and_set_tx_cnt(
uint64_t* p_barrier, uint32_t ctaid, uint32_t expected_copy_bytes)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
uint32_t p_bar = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(get_DSMEM_ptr(p_barrier, ctaid)));
asm volatile("{mbarrier.arrive.expect_tx.b64 _, [%0], %1; \n\t}" ::"r"(p_bar), "r"(expected_copy_bytes));
#endif
}
template <bool barSetTxCnt = true>
__forceinline__ __device__ void stas(uint32_t* p_data, uint64_t* p_barrier, uint32_t ctaid, uint32_t const& wrdat)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
if (barSetTxCnt)
arrive_DSMEM_barrier_and_set_tx_cnt(p_barrier, ctaid, sizeof(uint32_t));
uint32_t buffer_ptr = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(p_data));
uint32_t barrier_ptr = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(p_barrier));
uint32_t buffer_ptr_, barrier_ptr_;
asm volatile(
"{\n\t"
"setctarank.shared.u32 %0, %2, %4;\n\t"
"setctarank.shared.u32 %1, %3, %4;\n\t"
"}"
: "=r"(buffer_ptr_), "=r"(barrier_ptr_)
: "r"(buffer_ptr), "r"(barrier_ptr), "r"(ctaid));
issue_stas(buffer_ptr_, barrier_ptr_, wrdat);
#endif
}
template <bool barSetTxCnt = true>
__forceinline__ __device__ void stas(uint64_t* p_data, uint64_t* p_barrier, uint32_t ctaid, uint64_t const& wrdat)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
if (barSetTxCnt)
arrive_DSMEM_barrier_and_set_tx_cnt(p_barrier, ctaid, sizeof(uint64_t));
uint32_t buffer_ptr = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(p_data));
uint32_t barrier_ptr = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(p_barrier));
uint32_t buffer_ptr_, barrier_ptr_;
asm volatile(
"{\n\t"
"setctarank.shared.u32 %0, %2, %4;\n\t"
"setctarank.shared.u32 %1, %3, %4;\n\t"
"}"
: "=r"(buffer_ptr_), "=r"(barrier_ptr_)
: "r"(buffer_ptr), "r"(barrier_ptr), "r"(ctaid));
issue_stas(buffer_ptr_, barrier_ptr_, wrdat);
#endif
}
template <bool barSetTxCnt = true>
__forceinline__ __device__ void stas(uint64_t* p_data, uint64_t* p_barrier, uint32_t ctaid, uint32_t const wrdat0,
uint32_t const wrdat1, uint32_t const wrdat2, uint32_t const wrdat3)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
if (barSetTxCnt)
arrive_DSMEM_barrier_and_set_tx_cnt(p_barrier, ctaid, 4 * sizeof(uint32_t));
uint32_t buffer_ptr = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(p_data));
uint32_t barrier_ptr = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(p_barrier));
uint32_t buffer_ptr_, barrier_ptr_;
asm volatile(
"{\n\t"
"setctarank.shared.u32 %0, %2, %4;\n\t"
"setctarank.shared.u32 %1, %3, %4;\n\t"
"}"
: "=r"(buffer_ptr_), "=r"(barrier_ptr_)
: "r"(buffer_ptr), "r"(barrier_ptr), "r"(ctaid));
issue_stas(buffer_ptr_, barrier_ptr_, wrdat0, wrdat1, wrdat2, wrdat3);
#endif
}
template <bool barSetTxCnt = true, bool assumeAligned = true, typename T = void>
__forceinline__ __device__ void stas(T* p_data, uint64_t* p_barrier, uint32_t ctaid, T const& wrdat)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800))
static_assert(sizeof(T) % 4 == 0);
if (barSetTxCnt)
arrive_DSMEM_barrier_and_set_tx_cnt(p_barrier, ctaid, sizeof(T));
uint32_t buffer_ptr = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(p_data));
uint32_t barrier_ptr = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(p_barrier));
uint32_t buffer_ptr_, barrier_ptr_;
asm volatile(
"{\n\t"
"setctarank.shared.u32 %0, %2, %4;\n\t"
"setctarank.shared.u32 %1, %3, %4;\n\t"
"}"
: "=r"(buffer_ptr_), "=r"(barrier_ptr_)
: "r"(buffer_ptr), "r"(barrier_ptr), "r"(ctaid));
uint32_t const* p_wrdat_b32 = reinterpret_cast<uint32_t const*>(&wrdat);
for (uint32_t offset = 0; offset < sizeof(T);)
{
if constexpr (assumeAligned)
{
if (offset + 16 <= sizeof(T))
{
// Use write_async_v4_b32
issue_stas(buffer_ptr_ + offset, barrier_ptr_, p_wrdat_b32[offset / 4], p_wrdat_b32[offset / 4 + 1],
p_wrdat_b32[offset / 4 + 2], p_wrdat_b32[offset / 4 + 3]);
offset += 16;
}
else if (offset + 8 <= sizeof(T) && (buffer_ptr + offset) % 8 == 0)
{
// Use write_async_v2_b32
issue_stas(buffer_ptr + offset, barrier_ptr_, p_wrdat_b32[offset / 4], p_wrdat_b32[offset / 4 + 1]);
offset += 8;
}
else
{
issue_stas(buffer_ptr + offset, barrier_ptr_, p_wrdat_b32[offset / 4]);
offset += 4;
}
}
else
{
issue_stas(buffer_ptr + offset, barrier_ptr_, p_wrdat_b32[offset / 4]);
offset += 4;
}
}
#endif
}
struct OrderedMutex
{
uint64_t barriers[2];
__device__ void init(int tid0, int threads0, int threads1)
{
if (tid0)
{
bar_create(&barriers[0], threads0);
bar_create(&barriers[1], threads1);
}
}
OrderedMutex() = default;
OrderedMutex(OrderedMutex const& other) = delete;
};
class OrderedMutexAccessor
{
public:
struct State
{
int phase = 0;
};
private:
int _phase;
int _id;
Arrive_wait _barriers;
public:
__device__ OrderedMutexAccessor(OrderedMutex& m, int id, State state)
: _phase(state.phase)
, _id(id)
, _barriers(m.barriers)
{
}
__device__ void arrive()
{
_barriers.bar_arrive_normal(_id);
}
__device__ void wait()
{
_barriers.bar_wait(_id ^ 1, _phase);
_phase ^= 1;
}
__device__ State exportState()
{
return {.phase = _phase};
}
};
template <typename T, T VALUE>
struct ConstExprWrapper
{
static constexpr T value = VALUE;
};
template <int VALUE>
using ConstInt = ConstExprWrapper<int, VALUE>;
template <bool VALUE>
using ConstBool = ConstExprWrapper<bool, VALUE>;
template <typename T>
struct TmaDescType;
template <>
struct TmaDescType<__nv_bfloat16>
{
static constexpr auto value = CUtensorMapDataType_enum::CU_TENSOR_MAP_DATA_TYPE_BFLOAT16;
};
template <>
struct TmaDescType<float>
{
static constexpr auto value = CUtensorMapDataType_enum::CU_TENSOR_MAP_DATA_TYPE_FLOAT32;
};
#define DEFINE_MEMBER_CHECKER(member) \
template <typename T, typename V = bool> \
struct has_##member : std::false_type \
{ \
}; \
template <typename T> \
struct has_##member<T, \
typename std::enable_if<!std::is_same<decltype(std::declval<T>().member), void>::value, bool>::type> \
: std::true_type \
{ \
};
#define HAS_MEMBER(C, member) has_##member<C>::value
DEFINE_MEMBER_CHECKER(output)
DEFINE_MEMBER_CHECKER(residual)
DEFINE_MEMBER_CHECKER(bias)
DEFINE_MEMBER_CHECKER(deq)
DEFINE_MEMBER_CHECKER(qua)
DEFINE_MEMBER_CHECKER(high_preciecion_normed_output)
} // namespace common
TRTLLM_NAMESPACE_END
/*
* Macros compliant with TensorRT coding conventions
*/
#define TLLM_CUDA_CHECK(stat) \
do \
{ \
tensorrt_llm::common::check((stat), #stat, __FILE__, __LINE__); \
} while (0)
// We use singleton memory pool and the order of destructors depends on the compiler implementation. We find that the
// cudaFree/cudaFreeHost is called after cudaruntime destruction on Windows. There will be an cudaErrorCudartUnloading
// error. However, it is safe to ignore this error because the cuda runtime is already exited, we are no more worried
// about the memory leaks.
#define TLLM_CUDA_CHECK_FREE_RESOURCE(stat) \
do \
{ \
tensorrt_llm::common::checkEx((stat), {cudaSuccess, cudaErrorCudartUnloading}, #stat, __FILE__, __LINE__); \
} while (0)