TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/decoderState.h
Robin Kobus 45c7518032
[None][refactor] Simplify decoder state initialization (#6559)
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-08-12 21:44:41 +02:00

244 lines
11 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "decodingInput.h"
#include "decodingOutput.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/speculativeDecodingMode.h"
namespace tensorrt_llm::runtime::decoder
{
class BeamSearchBuffers
{
public:
explicit BeamSearchBuffers(BufferManager const& bufferManager);
void reshape(SizeType32 maxBeamWidth, SizeType32 maxSequenceLength);
// temporary buffers for the beam search + streaming case
DecodingOutput::BeamHypotheses mOutputBeamHypotheses;
// will store a slice of DecodingOutput::cumLogProbs
DecodingOutput::TensorPtr mCumLogProbsTmp;
SizeType32 mNumSMs;
};
class DecoderState
{
public:
using TensorPtr = ITensor::SharedPtr;
using LlmRequestPtr = std::shared_ptr<tensorrt_llm::batch_manager::LlmRequest>;
using RequestVector = std::vector<LlmRequestPtr>;
using DecodingInputPtr = std::unique_ptr<DecodingInput>;
using DecodingOutputPtr = std::unique_ptr<DecodingOutput>;
DecoderState();
//! @brief Setup buffers for the decoder excluding speculative decoding.
void setup(SizeType32 maxNumSequences, SizeType32 maxBeamWidth, SizeType32 maxAttentionWindow,
SizeType32 sinkTokenLength, SizeType32 maxSequenceLength, nvinfer1::DataType dtype,
ModelConfig const& modelConfig, WorldConfig const& worldConfig, BufferManager const& bufferManager);
//! @brief Setup buffers for the cache indirection.
//! @details This is used for beam search on pipeline parallel ranks without a decoder.
void setupCacheIndirection(SizeType32 maxNumSequences, SizeType32 maxBeamWidth, SizeType32 maxAttentionWindow,
BufferManager const& bufferManager);
//! @brief Setup buffers for speculative decoding.
void setupSpeculativeDecoding(SpeculativeDecodingMode const& speculativeDecodingMode,
SizeType32 maxTokensPerEngineStep, nvinfer1::DataType dtype, ModelConfig const& modelConfig,
WorldConfig const& worldConfig, BufferManager const& bufferManager);
//! @brief Disable lookahead decoding.
void disableLookahead(RequestVector const& genRequests);
//! @returns [batchSize], number of finished sequences per request, on gpu
[[nodiscard]] TensorPtr getFinishedSum() const;
//! @returns [batchSize, beamWidth], finished states of type FinishedState, on gpu
[[nodiscard]] TensorPtr getFinishReasons() const;
//! @returns [batchSize, maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token
//! ids without padding, on gpu. In case of beam search, contains the ungathered data.
[[nodiscard]] TensorPtr getIds() const;
//! @param batchIdx index of the batch
//! @returns [maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token ids without
//! padding for request `batchIdx`, on gpu. In case of beam search, contains the ungathered data.
[[nodiscard]] TensorPtr getIds(SizeType32 batchIdx) const;
//! @returns [batchSize, maxBeamWidth, maxInputLength + maxNewTokens], only used for beam search. It contains
//! gathered token ids without padding, on gpu.
[[nodiscard]] TensorPtr getGatheredIds() const;
//! @param batchIdx index of the batch
//! @returns [batchSize, maxBeamWidth, maxInputLength + maxNewTokens], only used for beam search. It contains
//! gathered token ids without padding for request `batchIdx`, on gpu.
[[nodiscard]] TensorPtr getGatheredIds(SizeType32 batchIdx) const;
//! @returns [batchSize, maxBeamWidth, maxInputLength + maxNewTokens], contains parent ids collected during beam
//! search without padding, on gpu
[[nodiscard]] TensorPtr getParentIds() const;
//! @returns [batchSize, maxBeamWidth], cumulative log probabilities (per beam), on gpu
[[nodiscard]] TensorPtr getCumLogProbs() const;
//! @returns [maxBeamWidth], cumulative log probabilities (per beam), on gpu
[[nodiscard]] TensorPtr getCumLogProbs(SizeType32 batchIdx) const;
//! @returns [batchSize, maxBeamWidth, maxSequenceLength], log probabilities (per beam), on gpu
[[nodiscard]] TensorPtr getLogProbs() const;
//! @returns [maxBeamWidth, maxSequenceLength], log probabilities (per beam), on gpu
[[nodiscard]] TensorPtr getLogProbs(SizeType32 batchIdx) const;
//! @returns [batchSize, maxBeamWidth], sequence lengths, on gpu
[[nodiscard]] TensorPtr getSequenceLengths() const;
//! @param batchIdx index of the batch
//! @returns [maxBeamWidth], sequence lengths for request `batchIdx`, on gpu
[[nodiscard]] TensorPtr getSequenceLengths(SizeType32 batchIdx) const;
//! @brief Get maxTokensPerStep tokens generated in the last forward pass
//! @returns [maxTokensPerStep, batchSize, maxBeamWidth], tokens generated in last forward pass, on gpu
[[nodiscard]] TensorPtr getAllNewTokens() const;
//! @returns [batchSize, maxDraftTokens], predicted draft tokens for next step, on gpu
[[nodiscard]] TensorPtr getNextDraftTokens() const;
//! @returns [batchSize], predicted draft tokens lengths for previous step, on gpu
[[nodiscard]] TensorPtr getPrevDraftTokensLengths() const;
//! @returns [batchSize], predicted draft tokens lengths for next step, on gpu
[[nodiscard]] TensorPtr getNextDraftTokensLengths() const;
//! @returns [batchSize + 1], exclusive sum of accepted draft token lengths, on gpu
[[nodiscard]] TensorPtr getAcceptedLengthsCumSum() const;
//! @returns [batchSize, maxAcceptedDraftTokensPerStep], accepted paths packed into continuous tensor, on gpu
[[nodiscard]] TensorPtr getAcceptedPackedPaths() const;
[[nodiscard]] SizeType32 getMaxNumSequences() const;
[[nodiscard]] SizeType32 getMaxBeamWidth() const;
[[nodiscard]] SizeType32 getMaxSequenceLength() const;
[[nodiscard]] SizeType32 getMaxDecodingDecoderTokens() const;
[[nodiscard]] SizeType32 getMaxDecodingEngineTokens() const;
//! @brief Get the number of tokens for all requests in the batch.
//! @returns The number of tokens for all requests in the batch.
[[nodiscard]] std::vector<SizeType32> const& getNumDecodingEngineTokens() const;
//! @brief Get the number of tokens for a specific request in the batch.
//! @param batchIdx The index of the request in the batch.
//! @returns The number of tokens for the specified request.
[[nodiscard]] SizeType32 getNumDecodingEngineTokens(SizeType32 batchIdx) const;
//! @brief Set the number of tokens for a specific request in the batch.
//! @param batchIdx The index of the request in the batch.
//! @param numTokens The number of tokens for the specified request.
void setNumDecodingEngineTokens(SizeType32 batchIdx, SizeType32 numTokens);
//! @brief Get the speculative decoding mode.
[[nodiscard]] SpeculativeDecodingMode getSpeculativeDecodingMode() const;
//! @brief Get the explicit draft tokens buffers.
[[nodiscard]] ExplicitDraftTokensBuffers::Inputs const& getExplicitDraftTokensBuffers() const;
//! @brief Get the eagle buffers.
[[nodiscard]] EagleBuffers::Inputs const& getEagleBuffers() const;
//! @brief Get the lookahead buffers.
[[nodiscard]] LookaheadDecodingBuffers const& getLookaheadBuffers() const;
//! @brief Workspace for beam search in streaming mode.
[[nodiscard]] BeamSearchBuffers const& getBeamSearchBuffers() const;
//! @brief Set the beam width for a specific request in the batch.
//! @param batchIdx The index of the request in the batch.
//! @param beamWidth The beam width for the specified request.
void setBeamWidth(SizeType32 batchIdx, SizeType32 beamWidth);
//! @brief Cache indirection input for beam search.
[[nodiscard]] TensorPtr getCacheIndirectionInput() const;
//! @brief Cache indirection output for beam search.
[[nodiscard]] TensorPtr getCacheIndirectionOutput() const;
//! @brief Get the generation steps for all requests in the batch.
//! @returns The generation steps for all requests in the batch.
[[nodiscard]] std::optional<std::vector<SizeType32>> const& getGenerationSteps() const;
//! @brief Set the generation steps for all requests in the batch.
//! @param generationSteps The generation steps for all requests in the batch.
void setGenerationSteps(std::vector<SizeType32> const& generationSteps);
//! @brief Stateful inputs for the decoder. Allocated for maxNumSequences slots.
[[nodiscard]] DecodingInput& getJointDecodingInput() const;
//! @brief Stateful outputs for the decoder. Allocated for maxNumSequences slots.
[[nodiscard]] DecodingOutput& getJointDecodingOutput() const;
private:
void setupBuffers(nvinfer1::DataType dtype, BufferManager const& bufferManager);
void reshapeBuffers(SizeType32 maxBatchSize, SizeType32 maxBeamWidth, SizeType32 maxAttentionWindow,
SizeType32 sinkTokenLength, SizeType32 maxSequenceLength, ModelConfig const& modelConfig,
WorldConfig const& worldConfig, BufferManager const& bufferManager);
void setupCacheIndirectionBuffers(BufferManager const& bufferManager);
void reshapeCacheIndirectionBuffers(
SizeType32 maxBatchSize, SizeType32 maxBeamWidth, SizeType32 maxAttentionWindow);
void setupSpeculativeDecodingBuffers(
SpeculativeDecodingMode speculativeDecodingMode, nvinfer1::DataType dtype, BufferManager const& bufferManager);
void reshapeSpeculativeDecodingBuffers(SpeculativeDecodingMode const& speculativeDecodingMode,
SizeType32 maxTokensPerEngineStep, ModelConfig const& modelConfig, WorldConfig const& worldConfig,
BufferManager const& bufferManager);
SizeType32 mMaxNumSequences{};
SizeType32 mMaxBeamWidth{};
SizeType32 mMaxSequenceLength{};
//! @brief Stateful inputs for the decoder. Allocated for maxNumSequences slots.
DecodingInputPtr mJointDecodingInput;
//! @brief Stateful outputs for the decoder. Allocated for maxNumSequences slots.
DecodingOutputPtr mJointDecodingOutput;
//! @brief Workspace for beam search in streaming mode.
std::unique_ptr<BeamSearchBuffers> mBeamSearchBuffers;
// How many tokens for one request can be processed per mDecoders call.
// It is maxDecodingTokens for non speculative decoding and Draft model approach.
// Otherwise it is 1.
SizeType32 mMaxDecodingDecoderTokens{1};
// How many tokens predicted by the engine for one request.
// It is maxDecodingTokens. >= 1 for speculative decoding and == 1 for non speculative decoding.
SizeType32 mMaxDecodingEngineTokens{1};
//! @brief [batchSize], the num tokens of each request.
std::vector<SizeType32> mNumDecodingEngineTokens;
SpeculativeDecodingMode mSpeculativeDecodingMode{SpeculativeDecodingMode::None()};
};
} // namespace tensorrt_llm::runtime::decoder