mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
155 lines
5.9 KiB
C++
155 lines
5.9 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/executor/types.h"
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/decodingInput.h"
|
|
#include "tensorrt_llm/runtime/decodingOutput.h"
|
|
#include "tensorrt_llm/runtime/samplingConfig.h"
|
|
|
|
#include <NvInferRuntime.h>
|
|
#include <curand_kernel.h>
|
|
|
|
#include <memory>
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
|
|
namespace layers
|
|
{
|
|
// Forward declaration
|
|
template <typename T>
|
|
class DynamicDecodeLayer;
|
|
} // namespace layers
|
|
|
|
namespace runtime
|
|
{
|
|
|
|
class SpeculativeDecodingModule;
|
|
|
|
class DecodingLayerWorkspace;
|
|
|
|
class IGptDecoder
|
|
{
|
|
public:
|
|
using TensorPtr = runtime::ITensor::SharedPtr;
|
|
using TensorConstPtr = runtime::ITensor::SharedConstPtr;
|
|
|
|
virtual ~IGptDecoder() = default;
|
|
|
|
/// @param explicitDraftTokensDType is only used by ExplicitDraftTokens model to WAR the lack of bf16 decoder.
|
|
virtual void setup(SamplingConfig const& samplingConfig, size_t batchSize, TensorConstPtr const& batchSlots,
|
|
std::optional<DecodingOutput> const& output = std::nullopt,
|
|
std::optional<nvinfer1::DataType> explicitDraftTokensDType = std::nullopt,
|
|
std::optional<std::vector<TensorConstPtr>> const& lookaheadPrompt = std::nullopt,
|
|
std::optional<std::vector<executor::LookaheadDecodingConfig>> const& lookaheadAlgoConfigs = std::nullopt)
|
|
= 0;
|
|
|
|
virtual void forwardAsync(DecodingOutput& output, DecodingInput const& input) = 0;
|
|
|
|
virtual void forwardSync(DecodingOutput& output, DecodingInput const& input) = 0;
|
|
|
|
virtual SamplingConfig const& getSamplingConfig() = 0;
|
|
|
|
virtual void disableLookahead(
|
|
std::optional<SamplingConfig> const& samplingConfig, SizeType32 batchSize, TensorConstPtr batchSlots)
|
|
= 0;
|
|
|
|
static std::unique_ptr<IGptDecoder> create(executor::DecodingMode const& mode, nvinfer1::DataType dtype,
|
|
size_t maxNumSequences, size_t maxBeamWidth, size_t vocabSize, size_t vocabSizePadded,
|
|
BufferManager::CudaStreamPtr const& stream,
|
|
std::shared_ptr<SpeculativeDecodingModule const> const& speculativeDecodingModule = nullptr);
|
|
};
|
|
|
|
template <typename T>
|
|
class GptDecoder : public virtual IGptDecoder
|
|
{
|
|
|
|
public:
|
|
using CudaStreamPtr = BufferManager::CudaStreamPtr;
|
|
using TensorPtr = std::shared_ptr<ITensor>;
|
|
|
|
GptDecoder(executor::DecodingMode const& mode, size_t maxNumSequences, size_t maxBeamWidth, size_t vocabSize,
|
|
size_t vocabSizePadded, CudaStreamPtr const& stream,
|
|
std::shared_ptr<SpeculativeDecodingModule const> speculativeDecodingModule = nullptr);
|
|
|
|
void setup(SamplingConfig const& samplingConfig, size_t batchSize, TensorConstPtr const& batchSlots,
|
|
std::optional<DecodingOutput> const& output = std::nullopt,
|
|
std::optional<nvinfer1::DataType> explicitDraftTokensDType = std::nullopt,
|
|
std::optional<std::vector<TensorConstPtr>> const& lookaheadPrompt = std::nullopt,
|
|
std::optional<std::vector<executor::LookaheadDecodingConfig>> const& lookaheadAlgoConfigs
|
|
= std::nullopt) override;
|
|
|
|
void forwardAsync(DecodingOutput& output, DecodingInput const& input) override;
|
|
|
|
void forwardSync(DecodingOutput& output, DecodingInput const& input) override;
|
|
|
|
SamplingConfig const& getSamplingConfig() override
|
|
{
|
|
return mSamplingConfig;
|
|
}
|
|
|
|
void disableLookahead(
|
|
std::optional<SamplingConfig> const& samplingConfig, SizeType32 batchSize, TensorConstPtr batchSlots) override;
|
|
|
|
private:
|
|
std::shared_ptr<BufferManager> mManager;
|
|
std::shared_ptr<tensorrt_llm::layers::DynamicDecodeLayer<T>> mDynamicDecodeLayer;
|
|
std::shared_ptr<tensorrt_llm::runtime::DecodingLayerWorkspace> mDecodingLayerWorkspace;
|
|
|
|
SamplingConfig mSamplingConfig;
|
|
|
|
size_t mMaxNumSequences;
|
|
size_t mVocabSize;
|
|
size_t mVocabSizePadded;
|
|
|
|
executor::DecodingMode mDecodingMode;
|
|
};
|
|
|
|
inline std::unique_ptr<IGptDecoder> IGptDecoder::create(executor::DecodingMode const& mode, nvinfer1::DataType dtype,
|
|
size_t maxNumSequences, size_t maxBeamWidth, size_t vocabSize, size_t vocabSizePadded,
|
|
BufferManager::CudaStreamPtr const& stream,
|
|
std::shared_ptr<SpeculativeDecodingModule const> const& speculativeDecodingModule)
|
|
{
|
|
switch (dtype)
|
|
{
|
|
case nvinfer1::DataType::kFLOAT:
|
|
return std::make_unique<GptDecoder<float>>(
|
|
mode, maxNumSequences, maxBeamWidth, vocabSize, vocabSizePadded, stream, speculativeDecodingModule);
|
|
case nvinfer1::DataType::kHALF:
|
|
return std::make_unique<GptDecoder<half>>(
|
|
mode, maxNumSequences, maxBeamWidth, vocabSize, vocabSizePadded, stream, speculativeDecodingModule);
|
|
default:
|
|
TLLM_THROW("Unsupported decoder data type: %d. Use either kFLOAT or kHALF.", static_cast<int>(dtype));
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// @brief Helper function to produce batch slots [0, 1, ..., batchSize - 1] for paths that do not explicitly provide
|
|
/// batch slots to the decoder.
|
|
inline runtime::ITensor::SharedConstPtr getDefaultBatchSlots(runtime::SizeType32 batchSize)
|
|
{
|
|
auto defaultBatchSlots = runtime::BufferManager::pinnedPool(
|
|
runtime::ITensor::makeShape({batchSize}), runtime::TRTDataType<runtime::SizeType32>::value);
|
|
auto range = runtime::BufferRange<runtime::SizeType32>(*defaultBatchSlots);
|
|
std::iota(range.begin(), range.end(), 0);
|
|
return defaultBatchSlots;
|
|
}
|
|
} // namespace runtime
|
|
} // namespace tensorrt_llm
|