mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
423 lines
18 KiB
C++
423 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/executor/executor.h"
|
|
#include "tensorrt_llm/layers/defaultDecodingParams.h"
|
|
#include "tensorrt_llm/runtime/common.h"
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <optional>
|
|
#include <vector>
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
|
|
class SamplingConfig
|
|
{
|
|
private:
|
|
using FloatType = float;
|
|
|
|
template <typename T>
|
|
using OptVec = std::optional<std::vector<T>>;
|
|
|
|
template <typename T>
|
|
static OptVec<T> fuseValues(
|
|
std::vector<SamplingConfig> const& configs, std::function<OptVec<T>(size_t ci)> accessor, T defaultValue)
|
|
{
|
|
std::vector<T> values;
|
|
bool atLeastOneHasValue{false};
|
|
for (size_t ci = 0; ci < configs.size(); ++ci)
|
|
{
|
|
auto const& configValue = accessor(ci);
|
|
if (configValue.has_value())
|
|
{
|
|
atLeastOneHasValue = true;
|
|
break;
|
|
}
|
|
}
|
|
if (atLeastOneHasValue)
|
|
{
|
|
for (size_t ci = 0; ci < configs.size(); ++ci)
|
|
{
|
|
auto value = defaultValue;
|
|
auto const& configValue = accessor(ci);
|
|
if (configValue.has_value())
|
|
{
|
|
TLLM_CHECK(configValue.value().size() == 1);
|
|
value = configValue.value().front();
|
|
}
|
|
values.push_back(value);
|
|
}
|
|
|
|
return std::make_optional<std::vector<T>>(values);
|
|
}
|
|
else
|
|
{
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
bool validateVec(std::string name, OptVec<T> const& vec, T min, std::optional<T> max = std::nullopt)
|
|
{
|
|
bool valid{true};
|
|
if (vec)
|
|
{
|
|
valid = std::all_of(vec->begin(), vec->end(),
|
|
[min, max](T elem)
|
|
{ return min < elem && ((max.has_value() && elem <= max.value()) || (!max.has_value())); });
|
|
if (!valid)
|
|
{
|
|
std::stringstream ss;
|
|
ss << "Incorrect sampling param. " << name << " is out of range (";
|
|
ss << min << ", ";
|
|
if (max.has_value())
|
|
{
|
|
ss << max.value();
|
|
}
|
|
else
|
|
{
|
|
ss << "inf";
|
|
}
|
|
ss << "]";
|
|
TLLM_LOG_WARNING(valid, ss.str());
|
|
}
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
public:
|
|
explicit SamplingConfig(SizeType32 beamWidth = 1)
|
|
: beamWidth{beamWidth}
|
|
{
|
|
}
|
|
|
|
explicit SamplingConfig(std::vector<SamplingConfig> const& configs)
|
|
{
|
|
TLLM_CHECK(configs.size() > 0);
|
|
beamWidth = configs.front().beamWidth;
|
|
numReturnSequences = configs.front().numReturnSequences;
|
|
normalizeLogProbs = configs.front().normalizeLogProbs;
|
|
temperature = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].temperature; },
|
|
layers::DefaultDecodingParams::getTemperature());
|
|
originalTemperature = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].originalTemperature; },
|
|
layers::DefaultDecodingParams::getTemperature());
|
|
minLength = fuseValues<SizeType32>(
|
|
configs, [&configs](size_t ci) { return configs[ci].minLength; },
|
|
layers::DefaultDecodingParams::getMinLength());
|
|
repetitionPenalty = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].repetitionPenalty; },
|
|
layers::DefaultDecodingParams::getRepetitionPenalty());
|
|
presencePenalty = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].presencePenalty; },
|
|
layers::DefaultDecodingParams::getPresencePenalty());
|
|
frequencyPenalty = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].frequencyPenalty; },
|
|
layers::DefaultDecodingParams::getFrequencyPenalty());
|
|
promptIgnoreLength = fuseValues<SizeType32>(
|
|
configs, [&configs](size_t ci) { return configs[ci].promptIgnoreLength; },
|
|
layers::DefaultDecodingParams::getPromptIgnoreLength());
|
|
noRepeatNgramSize = fuseValues<SizeType32>(
|
|
configs, [&configs](size_t ci) { return configs[ci].noRepeatNgramSize; },
|
|
layers::DefaultDecodingParams::getNoRepeatNgramSize());
|
|
topK = fuseValues<SizeType32>(
|
|
configs, [&configs](size_t ci) { return configs[ci].topK; }, layers::DefaultDecodingParams::getTopK());
|
|
topP = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].topP; }, layers::DefaultDecodingParams::getTopP());
|
|
|
|
// Generate a random seed for each samplingConfig with randomSeed == std::nullopt
|
|
randomSeed = std::vector<uint64_t>(configs.size());
|
|
for (size_t ci = 0; ci < configs.size(); ++ci)
|
|
{
|
|
auto const& configValue = configs[ci].randomSeed;
|
|
if (configValue)
|
|
{
|
|
TLLM_CHECK(configValue->size() == 1);
|
|
randomSeed->at(ci) = configValue->front();
|
|
}
|
|
else
|
|
{
|
|
randomSeed->at(ci) = layers::DefaultDecodingParams::generateRandomSeed();
|
|
}
|
|
}
|
|
|
|
topPDecay = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].topPDecay; },
|
|
layers::DefaultDecodingParams::getTopPDecay());
|
|
topPMin = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].topPMin; },
|
|
layers::DefaultDecodingParams::getTopPMin());
|
|
topPResetIds = fuseValues<TokenIdType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].topPResetIds; },
|
|
layers::DefaultDecodingParams::getTopPResetId());
|
|
beamSearchDiversityRate = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].beamSearchDiversityRate; },
|
|
layers::DefaultDecodingParams::getBeamSearchDiversity());
|
|
lengthPenalty = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].lengthPenalty; },
|
|
layers::DefaultDecodingParams::getLengthPenalty());
|
|
earlyStopping = fuseValues<SizeType32>(
|
|
configs, [&configs](size_t ci) { return configs[ci].earlyStopping; },
|
|
layers::DefaultDecodingParams::getEarlyStopping());
|
|
topKMedusaHeads = fuseValues<std::vector<SizeType32>>(
|
|
configs, [&configs](size_t ci) { return configs[ci].topKMedusaHeads; },
|
|
layers::DefaultDecodingParams::getTopKMedusaHeads());
|
|
outputLogProbs = fuseValues<bool>(
|
|
configs, [&configs](size_t ci) { return configs[ci].outputLogProbs; }, false);
|
|
cumLogProbs = fuseValues<bool>(
|
|
configs, [&configs](size_t ci) { return configs[ci].cumLogProbs; }, false);
|
|
beamWidthArray = fuseValues<std::vector<SizeType32>>(
|
|
configs, [&configs](size_t ci) { return configs[ci].beamWidthArray; },
|
|
layers::DefaultDecodingParams::getBeamWidthArray());
|
|
// Only used for tests.
|
|
draftAcceptanceThreshold = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].draftAcceptanceThreshold; }, 0);
|
|
minP = fuseValues<FloatType>(
|
|
configs, [&configs](size_t ci) { return configs[ci].minP; }, layers::DefaultDecodingParams::getMinP());
|
|
}
|
|
|
|
explicit SamplingConfig(executor::SamplingConfig const& samplingConfig,
|
|
std::optional<executor::ExternalDraftTokensConfig> const& externalDraftTokensConfig = std::nullopt)
|
|
: beamWidth{samplingConfig.getBeamWidth()}
|
|
, numReturnSequences(samplingConfig.getNumReturnSequences())
|
|
{
|
|
|
|
if (externalDraftTokensConfig && externalDraftTokensConfig.value().getAcceptanceThreshold())
|
|
{
|
|
draftAcceptanceThreshold
|
|
= std::vector<FloatType>{externalDraftTokensConfig.value().getAcceptanceThreshold().value()};
|
|
}
|
|
|
|
#define SET_FROM_OPTIONAL(varName, VarName, VarType) \
|
|
\
|
|
if (samplingConfig.get##VarName()) \
|
|
{ \
|
|
varName = std::vector<VarType>{samplingConfig.get##VarName().value()}; \
|
|
}
|
|
|
|
SET_FROM_OPTIONAL(topK, TopK, SizeType32)
|
|
SET_FROM_OPTIONAL(topP, TopP, FloatType)
|
|
SET_FROM_OPTIONAL(topPMin, TopPMin, FloatType)
|
|
SET_FROM_OPTIONAL(topPResetIds, TopPResetIds, TokenIdType)
|
|
SET_FROM_OPTIONAL(topPDecay, TopPDecay, FloatType)
|
|
SET_FROM_OPTIONAL(randomSeed, Seed, uint64_t)
|
|
SET_FROM_OPTIONAL(temperature, Temperature, FloatType)
|
|
SET_FROM_OPTIONAL(originalTemperature, Temperature, FloatType)
|
|
SET_FROM_OPTIONAL(minLength, MinTokens, SizeType32)
|
|
SET_FROM_OPTIONAL(beamSearchDiversityRate, BeamSearchDiversityRate, FloatType)
|
|
SET_FROM_OPTIONAL(repetitionPenalty, RepetitionPenalty, FloatType)
|
|
SET_FROM_OPTIONAL(presencePenalty, PresencePenalty, FloatType)
|
|
SET_FROM_OPTIONAL(frequencyPenalty, FrequencyPenalty, FloatType)
|
|
SET_FROM_OPTIONAL(promptIgnoreLength, PromptIgnoreLength, SizeType32)
|
|
SET_FROM_OPTIONAL(lengthPenalty, LengthPenalty, FloatType)
|
|
SET_FROM_OPTIONAL(earlyStopping, EarlyStopping, SizeType32)
|
|
SET_FROM_OPTIONAL(noRepeatNgramSize, NoRepeatNgramSize, SizeType32)
|
|
SET_FROM_OPTIONAL(minP, MinP, FloatType)
|
|
SET_FROM_OPTIONAL(beamWidthArray, BeamWidthArray, std::vector<SizeType32>)
|
|
#undef SET_FROM_OPTIONAL
|
|
}
|
|
|
|
bool validate()
|
|
{
|
|
auto constexpr fltEpsilon = std::numeric_limits<float>::epsilon();
|
|
|
|
bool valid{true};
|
|
|
|
valid &= (beamWidth > 0);
|
|
if (!valid)
|
|
{
|
|
TLLM_LOG_WARNING(
|
|
"Requested beam width %d is incorrect. Must be > 0. To de-activate beam searching set beamWidth to 1.",
|
|
beamWidth);
|
|
}
|
|
|
|
if (numReturnSequences)
|
|
{
|
|
valid &= (numReturnSequences.value() > 0);
|
|
if (!valid)
|
|
{
|
|
TLLM_LOG_WARNING(
|
|
"Requested numReturnSequences %d is incorrect. Must be > 0.", numReturnSequences.value());
|
|
}
|
|
valid &= (beamWidth == 1 || numReturnSequences.value() <= beamWidth);
|
|
if (!valid)
|
|
{
|
|
TLLM_LOG_WARNING(
|
|
"Requested numReturnSequences %d is incorrect. In beam search, numReturnSequences should not "
|
|
"exceed the beam width %d.",
|
|
numReturnSequences.value(), beamWidth);
|
|
}
|
|
}
|
|
|
|
valid &= validateVec("topK", topK, -1);
|
|
valid &= validateVec("topP", topP, -fltEpsilon, {1.f});
|
|
valid &= validateVec("topPMin", topPMin, 0.f, {1.f});
|
|
valid &= validateVec("topPResetIds", topPResetIds, -1);
|
|
valid &= validateVec("topPDecay", topPDecay, 0.f, {1.f});
|
|
valid &= validateVec("temperature", temperature, -fltEpsilon);
|
|
valid &= validateVec("minLength", minLength, -1);
|
|
valid &= validateVec("beamSearchDiversityRate", beamSearchDiversityRate, -fltEpsilon);
|
|
valid &= validateVec("repetitionPenalty", repetitionPenalty, 0.f);
|
|
// TODO: checking `lengthPenalty`leads to a failure in
|
|
// `test_openai_chat_example`, debug and re-enable it later.
|
|
// valid &= validateVec("lengthPenalty", lengthPenalty, 0.f);
|
|
valid &= validateVec("noRepeatNgramSize", noRepeatNgramSize, 0);
|
|
valid &= validateVec("minP", minP, -fltEpsilon, {1.f});
|
|
// TODO: check `beamWidthArray`
|
|
|
|
// Detect greedy sampling and overwrite params.
|
|
if (temperature)
|
|
{
|
|
// Keep original temperature for Eagle.
|
|
bool saveOriginalTemperature{false};
|
|
if (!originalTemperature)
|
|
{
|
|
saveOriginalTemperature = true;
|
|
originalTemperature = std::vector<FloatType>(temperature->size());
|
|
}
|
|
|
|
for (size_t ti = 0; ti < temperature->size(); ++ti)
|
|
{
|
|
if (temperature->at(ti) == 0.f)
|
|
{
|
|
if (saveOriginalTemperature)
|
|
{
|
|
originalTemperature->at(ti) = 0.f;
|
|
}
|
|
temperature->at(ti) = 1.0f;
|
|
|
|
if (topK)
|
|
{
|
|
topK->at(ti) = 1;
|
|
}
|
|
if (topP)
|
|
{
|
|
topP->at(ti) = 1.f;
|
|
}
|
|
}
|
|
else if (saveOriginalTemperature)
|
|
{
|
|
originalTemperature->at(ti) = temperature->at(ti);
|
|
}
|
|
}
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
template <typename T>
|
|
bool useDefaultValues(OptVec<T> const& vec, T defaultValue)
|
|
{
|
|
bool useDefault{true};
|
|
if (vec)
|
|
{
|
|
useDefault = std::all_of(vec->begin(), vec->end(), [defaultValue](T elem) { return elem == defaultValue; });
|
|
}
|
|
return useDefault;
|
|
}
|
|
|
|
public:
|
|
SizeType32 beamWidth;
|
|
std::optional<SizeType32> numReturnSequences;
|
|
|
|
// penalties, [1] for one request, [batchSize] for one batch, the same for other parameters below
|
|
OptVec<FloatType> temperature; // [1] or [batchSize]
|
|
OptVec<FloatType> originalTemperature; // [1] or [batchSize]
|
|
OptVec<SizeType32> minLength; // [1] or [batchSize]
|
|
OptVec<FloatType> repetitionPenalty; // [1] or [batchSize]
|
|
OptVec<FloatType> presencePenalty; // [1] or [batchSize]
|
|
OptVec<FloatType> frequencyPenalty; // [1] or [batchSize]
|
|
OptVec<SizeType32> promptIgnoreLength; // [1] or [batchSize]
|
|
OptVec<SizeType32> noRepeatNgramSize; // [1] or [batchSize]
|
|
|
|
// probs
|
|
OptVec<bool> outputLogProbs;
|
|
OptVec<bool> cumLogProbs;
|
|
|
|
// sampling layers
|
|
OptVec<SizeType32> topK; // [1] or [batchSize]
|
|
OptVec<FloatType> topP; // [1] or [batchSize]
|
|
OptVec<uint64_t> randomSeed; // [1] or [batchSize]
|
|
OptVec<FloatType> topPDecay; // [1] or [batchSize], between [0, 1]
|
|
OptVec<FloatType> topPMin; // [1] or [batchSize], between [0, 1]
|
|
OptVec<TokenIdType> topPResetIds; // [1] or [batchSize]
|
|
OptVec<FloatType> minP; // [1] or [batchSize]
|
|
|
|
// beam search layer
|
|
OptVec<FloatType> beamSearchDiversityRate; // [1] or [batchSize]
|
|
OptVec<FloatType> lengthPenalty; // [1] or [batchSize]
|
|
OptVec<SizeType32> earlyStopping; // [1] or [batchSize]
|
|
OptVec<std::vector<SizeType32>> beamWidthArray; // [maxBeamWidthArrayLength] or [batchSize, maxBeamWidthArrayLength]
|
|
|
|
// speculative decoding, only the first value is used (in gptDecoderBatched.cpp)
|
|
OptVec<FloatType> draftAcceptanceThreshold; // [1] or [batchSize]
|
|
|
|
// medusa params
|
|
OptVec<std::vector<SizeType32>> topKMedusaHeads; // [batchSize, maxMedusaHeads]
|
|
|
|
std::optional<bool> normalizeLogProbs;
|
|
|
|
bool operator==(SamplingConfig const& other) const
|
|
{
|
|
return beamWidth == other.beamWidth && numReturnSequences == other.numReturnSequences
|
|
&& temperature == other.temperature && originalTemperature == other.originalTemperature
|
|
&& minLength == other.minLength && repetitionPenalty == other.repetitionPenalty
|
|
&& presencePenalty == other.presencePenalty && frequencyPenalty == other.frequencyPenalty
|
|
&& promptIgnoreLength == other.promptIgnoreLength && noRepeatNgramSize == other.noRepeatNgramSize
|
|
&& topK == other.topK && topP == other.topP && randomSeed == other.randomSeed
|
|
&& topPDecay == other.topPDecay && topPMin == other.topPMin && topPResetIds == other.topPResetIds
|
|
&& beamSearchDiversityRate == other.beamSearchDiversityRate && lengthPenalty == other.lengthPenalty
|
|
&& earlyStopping == other.earlyStopping && draftAcceptanceThreshold == other.draftAcceptanceThreshold
|
|
&& topKMedusaHeads == other.topKMedusaHeads && normalizeLogProbs == other.normalizeLogProbs
|
|
&& outputLogProbs == other.outputLogProbs && cumLogProbs == other.cumLogProbs && minP == other.minP
|
|
&& beamWidthArray == other.beamWidthArray;
|
|
}
|
|
|
|
SizeType32 getNumReturnBeams() const
|
|
{
|
|
if (numReturnSequences && beamWidth > 1)
|
|
{
|
|
return std::min(numReturnSequences.value(), beamWidth);
|
|
}
|
|
return beamWidth;
|
|
}
|
|
|
|
// Get the maximum beam width of a whole SamplingConfig
|
|
SizeType32 getMaxBeamWidth() const noexcept
|
|
{
|
|
SizeType32 maxBeamWidth = this->beamWidth; // For non-Variable-Beam-Width-Search
|
|
auto const& beamWidthArray = this->beamWidthArray;
|
|
if (beamWidthArray.has_value())
|
|
{
|
|
for (size_t indexSC = 0; indexSC < beamWidthArray->size(); ++indexSC)
|
|
{
|
|
auto const& array = beamWidthArray.value()[indexSC];
|
|
auto arrayMax = *std::max_element(array.begin(), array.end());
|
|
maxBeamWidth = std::max(maxBeamWidth, arrayMax);
|
|
}
|
|
}
|
|
return maxBeamWidth;
|
|
}
|
|
};
|
|
|
|
} // namespace tensorrt_llm::runtime
|