TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/trtGptModelFactory.h
Robin Kobus b3045c44b9
refactor: remove TrtGptModelOptionalParams (#5165)
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-06-20 10:31:40 +02:00

99 lines
4.3 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/batch_manager/trtGptModel.h"
#include "tensorrt_llm/batch_manager/trtGptModelInflightBatching.h"
#include "tensorrt_llm/executor/executor.h"
#include "tensorrt_llm/runtime/gptJsonConfig.h"
#include "tensorrt_llm/runtime/modelConfig.h"
#include "tensorrt_llm/runtime/rawEngine.h"
#include "tensorrt_llm/runtime/tllmLogger.h"
#include "tensorrt_llm/runtime/worldConfig.h"
#include <NvInferPlugin.h>
#include <memory>
#include <optional>
namespace tensorrt_llm::batch_manager
{
class TrtGptModelFactory
{
public:
using SizeType32 = tensorrt_llm::runtime::SizeType32;
static std::shared_ptr<TrtGptModel> create(std::filesystem::path const& trtEnginePath, TrtGptModelType modelType,
executor::ExecutorConfig const& executorConfig, bool isLeaderInOrchMode)
{
auto const jsonConfig = runtime::GptJsonConfig::parse(trtEnginePath / "config.json");
auto const& deviceIds = executorConfig.getParallelConfig().value_or(executor::ParallelConfig()).getDeviceIds();
auto const worldConfig = getWorldConfig(jsonConfig, deviceIds);
auto const enginePath = trtEnginePath / jsonConfig.engineFilename(worldConfig);
auto const& modelConfig = jsonConfig.getModelConfig();
return create(
runtime::RawEngine(enginePath), modelConfig, worldConfig, modelType, executorConfig, isLeaderInOrchMode);
}
static std::shared_ptr<TrtGptModel> create(std::filesystem::path const& trtEnginePath, TrtGptModelType modelType,
runtime::GptJsonConfig const& jsonConfig, runtime::WorldConfig const& worldConfig,
executor::ExecutorConfig const& executorConfig, bool isLeaderInOrchMode)
{
auto const enginePath = trtEnginePath / jsonConfig.engineFilename(worldConfig);
auto const& modelConfig = jsonConfig.getModelConfig();
return create(
runtime::RawEngine(enginePath), modelConfig, worldConfig, modelType, executorConfig, isLeaderInOrchMode);
}
static std::shared_ptr<TrtGptModel> create(runtime::RawEngine const& rawEngine,
runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig, TrtGptModelType modelType,
executor::ExecutorConfig const& executorConfig, bool isLeaderInOrchMode)
{
auto logger = std::make_shared<runtime::TllmLogger>();
auto const device = worldConfig.getDevice();
auto const rank = worldConfig.getRank();
TLLM_LOG_INFO("Rank %d is using GPU %d", rank, device);
TLLM_CUDA_CHECK(cudaSetDevice(device));
if ((modelType == TrtGptModelType::InflightBatching) || (modelType == TrtGptModelType::InflightFusedBatching))
{
executor::ExecutorConfig const& fixedExecutorConfig
= TrtGptModelInflightBatching::executorConfigIsValid(modelConfig, executorConfig)
? executorConfig
: TrtGptModelInflightBatching::fixExecutorConfig(modelConfig, executorConfig);
bool const ctxGenFusion = modelType == TrtGptModelType::InflightFusedBatching;
return std::make_shared<TrtGptModelInflightBatching>(
logger, modelConfig, worldConfig, rawEngine, ctxGenFusion, fixedExecutorConfig, isLeaderInOrchMode);
}
throw std::runtime_error("Invalid modelType in trtGptModelFactory");
}
private:
static runtime::WorldConfig getWorldConfig(
runtime::GptJsonConfig const& json, std::optional<std::vector<SizeType32>> const& deviceIds)
{
return runtime::WorldConfig::mpi(json.getGpusPerNode(), json.getTensorParallelism(),
json.getPipelineParallelism(), json.getContextParallelism(), deviceIds);
}
};
} // namespace tensorrt_llm::batch_manager