mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
99 lines
4.3 KiB
C++
99 lines
4.3 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/batch_manager/trtGptModel.h"
|
|
#include "tensorrt_llm/batch_manager/trtGptModelInflightBatching.h"
|
|
#include "tensorrt_llm/executor/executor.h"
|
|
#include "tensorrt_llm/runtime/gptJsonConfig.h"
|
|
#include "tensorrt_llm/runtime/modelConfig.h"
|
|
#include "tensorrt_llm/runtime/rawEngine.h"
|
|
#include "tensorrt_llm/runtime/tllmLogger.h"
|
|
#include "tensorrt_llm/runtime/worldConfig.h"
|
|
|
|
#include <NvInferPlugin.h>
|
|
|
|
#include <memory>
|
|
#include <optional>
|
|
|
|
namespace tensorrt_llm::batch_manager
|
|
{
|
|
|
|
class TrtGptModelFactory
|
|
{
|
|
public:
|
|
using SizeType32 = tensorrt_llm::runtime::SizeType32;
|
|
|
|
static std::shared_ptr<TrtGptModel> create(std::filesystem::path const& trtEnginePath, TrtGptModelType modelType,
|
|
executor::ExecutorConfig const& executorConfig, bool isLeaderInOrchMode)
|
|
{
|
|
auto const jsonConfig = runtime::GptJsonConfig::parse(trtEnginePath / "config.json");
|
|
auto const& deviceIds = executorConfig.getParallelConfig().value_or(executor::ParallelConfig()).getDeviceIds();
|
|
auto const worldConfig = getWorldConfig(jsonConfig, deviceIds);
|
|
auto const enginePath = trtEnginePath / jsonConfig.engineFilename(worldConfig);
|
|
|
|
auto const& modelConfig = jsonConfig.getModelConfig();
|
|
return create(
|
|
runtime::RawEngine(enginePath), modelConfig, worldConfig, modelType, executorConfig, isLeaderInOrchMode);
|
|
}
|
|
|
|
static std::shared_ptr<TrtGptModel> create(std::filesystem::path const& trtEnginePath, TrtGptModelType modelType,
|
|
runtime::GptJsonConfig const& jsonConfig, runtime::WorldConfig const& worldConfig,
|
|
executor::ExecutorConfig const& executorConfig, bool isLeaderInOrchMode)
|
|
{
|
|
auto const enginePath = trtEnginePath / jsonConfig.engineFilename(worldConfig);
|
|
auto const& modelConfig = jsonConfig.getModelConfig();
|
|
return create(
|
|
runtime::RawEngine(enginePath), modelConfig, worldConfig, modelType, executorConfig, isLeaderInOrchMode);
|
|
}
|
|
|
|
static std::shared_ptr<TrtGptModel> create(runtime::RawEngine const& rawEngine,
|
|
runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig, TrtGptModelType modelType,
|
|
executor::ExecutorConfig const& executorConfig, bool isLeaderInOrchMode)
|
|
{
|
|
auto logger = std::make_shared<runtime::TllmLogger>();
|
|
auto const device = worldConfig.getDevice();
|
|
auto const rank = worldConfig.getRank();
|
|
TLLM_LOG_INFO("Rank %d is using GPU %d", rank, device);
|
|
TLLM_CUDA_CHECK(cudaSetDevice(device));
|
|
|
|
if ((modelType == TrtGptModelType::InflightBatching) || (modelType == TrtGptModelType::InflightFusedBatching))
|
|
{
|
|
executor::ExecutorConfig const& fixedExecutorConfig
|
|
= TrtGptModelInflightBatching::executorConfigIsValid(modelConfig, executorConfig)
|
|
? executorConfig
|
|
: TrtGptModelInflightBatching::fixExecutorConfig(modelConfig, executorConfig);
|
|
bool const ctxGenFusion = modelType == TrtGptModelType::InflightFusedBatching;
|
|
return std::make_shared<TrtGptModelInflightBatching>(
|
|
logger, modelConfig, worldConfig, rawEngine, ctxGenFusion, fixedExecutorConfig, isLeaderInOrchMode);
|
|
}
|
|
|
|
throw std::runtime_error("Invalid modelType in trtGptModelFactory");
|
|
}
|
|
|
|
private:
|
|
static runtime::WorldConfig getWorldConfig(
|
|
runtime::GptJsonConfig const& json, std::optional<std::vector<SizeType32>> const& deviceIds)
|
|
{
|
|
return runtime::WorldConfig::mpi(json.getGpusPerNode(), json.getTensorParallelism(),
|
|
json.getPipelineParallelism(), json.getContextParallelism(), deviceIds);
|
|
}
|
|
};
|
|
|
|
} // namespace tensorrt_llm::batch_manager
|