mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
225 lines
14 KiB
C++
225 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/config.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/kernels/topkLastDim.h" // Air TopK
|
|
#include "tensorrt_llm/runtime/common.h"
|
|
|
|
#define BEAM_SEARCH_DEBUG 0
|
|
|
|
TRTLLM_NAMESPACE_BEGIN
|
|
|
|
namespace kernels
|
|
{
|
|
static size_t constexpr kMaxBeamWidth = 1024; // Max beam width supported in TRT-LLM now
|
|
static size_t constexpr kMaxBeamWidthForV1 = 8; // Max beam width for V1 workflow (V2 for larger)
|
|
static size_t constexpr kMaxBeamWidthArrayLength = 8; // Max length of beam width array of a request
|
|
static size_t constexpr kThreadForSmallBeamWidth = 256; // Max count of thread for stage 1 in V1 workflow
|
|
static size_t constexpr kMaxVPartStage1 = 128; // Max vocab part count for stage 1 in V1 workflow
|
|
|
|
struct BeamHypotheses
|
|
{
|
|
// clang-format off
|
|
// MBS: max_batch_size, BS: batch_size, BM: beam_width, MSL: max_seq_length
|
|
// %%: parameter name in file generation.py (python workflow)
|
|
// Candidate beams: a beam which generates end_id or its sequence length reaches MSL
|
|
// Candidate-Beam-Array (CBA): The arrays to place the candidate beams and related information
|
|
// Variable-Beam-Width-Search (VBWS): A search mode that allows using different beam width for each step
|
|
|
|
// Scalar values
|
|
bool bReturnNormedScore{false}; // Return `normedScore` or `cumLogProbs`, always be `false` now
|
|
bool bVBWS{false}; // whether to use VBWS for Beam-Search
|
|
size_t nMaxBatchSize{0}; // Buildtime max batch size
|
|
size_t nBatchSize{0}; // Runtime batch size
|
|
size_t nBeamWidth{0}; // Runtime beam width
|
|
size_t nBeamWidthIn{0}; // Scalar value of current input beam width, for VBWS
|
|
size_t nBeamWidthOut{0}; // Scalar value of current output beam width, for VBWS
|
|
size_t nMaxSeqLen{0}; //
|
|
size_t nVocabSize{0}; // Vocab Size Padded
|
|
size_t nVPart{0}; // Count of vocab_size_padded divided
|
|
size_t nByteMaxSharedMemoryPerBlock{0}; // Device information
|
|
size_t nByteSharedMemoryStage1{0}; // Dynamic shared memory size of stage 1
|
|
size_t nByteSharedMemoryStage3{0}; // Static shared memory size of stage 3
|
|
|
|
// Pointers from SamplingConfig
|
|
float const* diversityRates{nullptr}; // [BS]
|
|
float const* lengthPenalties{nullptr}; // [BS]
|
|
int const* earlyStoppings{nullptr}; // [BS]
|
|
int const* beamWidthArraysHost{nullptr}; // [BS, kMaxBeamWidthArrayLength] for VBWS
|
|
int* nBeamWidthInHost{nullptr}; // [BS], cpu for VBWS, beam width of last forward computation
|
|
int* nBeamWidthOutHost{nullptr}; // [BS], cpu for VBWS, beam width of next forward computation
|
|
|
|
// Pointers from input
|
|
int const* inputLengths{nullptr}; // [BS, BM] %% context_length
|
|
int const* endIds{nullptr}; // [BS, BM] %% self.end_ids
|
|
runtime::SizeType32 const* batchSlots{nullptr}; // [BS]
|
|
|
|
// Pointers for output
|
|
int* outputIds{nullptr}; // [BS, BM, MSL] %% self.output_ids only used in gather_tree
|
|
float* logProbs{nullptr}; // [BS, BM, MSL] %% self.log_probs only used in gather_tree
|
|
float* logProbsTiled{nullptr}; // [MSL, MBS, BM] %% self.log_probs_tiled
|
|
int* sequenceLengths{nullptr}; // [BS, BM] %% self.sequence_length_buffer
|
|
float* cumLogProbs{nullptr}; // [BS, BM] %% self.cum_log_probs
|
|
|
|
// Pointers of CBA
|
|
int* outputIdsCBA{nullptr}; // [BS, BM*2, MSL] %% self.beam_hyps_output_ids_cba
|
|
float* logProbsCBA{nullptr}; // [BS, BM*2, MSL] %% self.beam_hyps_log_probs_cba
|
|
int* sequenceLengthsCBA{nullptr}; // [BS, BM*2] %% self.beam_hyps_seq_len_cba
|
|
float* cumLogProbsCBA{nullptr}; // [BS, BM*2] %% self.beam_hyps_cum_log_probs_cba
|
|
float* normedScoresCBA{nullptr}; // [BS, BM*2] %% self.beam_hyps_normed_scores_cba
|
|
int* numBeamsCBA{nullptr}; // [BS] %% self.beam_hyps_num_beams number of beams in CBA
|
|
float* minNormedScoresCBA{nullptr}; // [BS] %% self.beam_hyps_min_normed_scores worst score in CBA
|
|
|
|
// Pointers related to beam search process, they are initialized in those two functions:
|
|
// [gptDecoder.cpp] GptDecoder<T>::forward or [dynamicDecodeOp.cpp] FtDynamicDecode<T>::forward
|
|
bool* batchDones{nullptr}; // [BS] %% self.beam_hyps_is_done whether a whole batch is finished
|
|
::tensorrt_llm::kernels::FinishedState* finished{nullptr}; // [BS*BM], uint8 %% self.finished whether and how a beam is finished
|
|
|
|
// Pointers for backtrack of the beams, they are relocated in [dynamicDecodeLayer.cpp] DynamicDecodeLayer<T>::prepareIdsPtrs
|
|
int** outputIdsPtr{nullptr}; // [BS][BM, MSL] %% self.output_ids
|
|
int** parentIdsPtr{nullptr}; // [BS][BM, MSL] %% self.parent_ids
|
|
|
|
// Pointers for gather_tree(), read the unfinished beams from them and write to CBA for the final selection
|
|
int const* outputIdsUnfinish{nullptr}; // [BS, BM, MSL] %% self.output_ids
|
|
int const* parentIdsUnfinish{nullptr}; // [BS, BM, MSL] %% self.parent_ids
|
|
|
|
// clang-format on
|
|
|
|
void print();
|
|
};
|
|
|
|
__inline__ int padToNextPowerOfTwo(int const n)
|
|
{
|
|
// Pad n up to the nearest power of 2
|
|
int recursor = n - 1;
|
|
int res = 2;
|
|
while (recursor >>= 1)
|
|
res <<= 1;
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
__device__ __forceinline__ T applyLengthPenalty(T const log_prob, int const length, float const length_penalty)
|
|
{
|
|
// score = log(prob) / (length ^ length_penalty)
|
|
if (length_penalty == 0.0f || length == 1)
|
|
{
|
|
return log_prob;
|
|
}
|
|
return log_prob / static_cast<T>(powf(static_cast<float>(length), length_penalty));
|
|
}
|
|
|
|
template <typename T, bool IS_V2>
|
|
void invokeTopkBeamSearch(T const* logProbs, T const* bias, void* workspace, BeamHypotheses& bh, cudaStream_t stream);
|
|
|
|
void invokeUpdateCacheIndirection(int* tgtCI, int const* srcCI, BeamHypotheses& bh,
|
|
runtime::SizeType32 const maxAttentionWindow, runtime::SizeType32 sinkTokenLength, cudaStream_t stream);
|
|
|
|
__global__ void addCumLogProbs(float* __restrict pStage1LogProbs, float const* __restrict cumLogProbs,
|
|
::tensorrt_llm::kernels::FinishedState const* finished, int const* endIds, float const* diversityRates,
|
|
runtime::SizeType32 const* batchSlots, size_t const nBS, size_t const nBMIn, size_t const nBMOut, size_t const nBM);
|
|
|
|
__global__ void addCumLogProbs(half* __restrict pStage1LogProbs, float const* __restrict cumLogProbs,
|
|
::tensorrt_llm::kernels::FinishedState const* finished, int const* endIds, float const* diversityRates,
|
|
runtime::SizeType32 const* batchSlots, size_t const nBS, size_t const nBMIn, size_t const nBMOut, size_t const nBM);
|
|
|
|
__global__ void gatherId(int const* __restrict pStage1Id, int* __restrict pStage2Id, size_t const nBS,
|
|
size_t const nBMIn, size_t const nBMOut, size_t const nV);
|
|
|
|
void printLogProbs(float const* x, int const nBS, int const nBMIn, int const nBM, int const nV);
|
|
|
|
// for Beam Search debug
|
|
#if BEAM_SEARCH_DEBUG
|
|
#define BID 0
|
|
|
|
#define LINE(x) printf(x "@L%d\n", __LINE__);
|
|
|
|
#define PRINT(x) \
|
|
{ \
|
|
printf(#x "="); \
|
|
print_element_(x); \
|
|
printf("\n"); \
|
|
}
|
|
|
|
// Host function
|
|
#define PRINT_HOST(x, nRow, nCol, nColPadded) \
|
|
{ \
|
|
if (x == nullptr) \
|
|
{ \
|
|
printf(#x "=nullptr\n"); \
|
|
} \
|
|
else \
|
|
{ \
|
|
printf(#x "=\n"); \
|
|
printMatrix(x, nRow, nCol, nColPadded); \
|
|
} \
|
|
}
|
|
#define PH2(x, nCol) PRINT_HOST(x, 1, nCol, nCol)
|
|
#define PH3(x, nElement, nCol) PRINT_HOST(x, ((nElement) / (nCol)), nCol, nCol)
|
|
|
|
// Device function
|
|
#define PRINT_DEVICE(x, nRow, nCol, nColPadded) \
|
|
{ \
|
|
if (x == nullptr) \
|
|
{ \
|
|
printf(#x "=nullptr\n"); \
|
|
} \
|
|
else \
|
|
{ \
|
|
printf(#x "=\n"); \
|
|
printMatrixDevice(x, nRow, nCol, nColPadded); \
|
|
} \
|
|
}
|
|
#define PD2(x, nCol) PRINT_DEVICE(x, 1, nCol, nCol)
|
|
#define PD3(x, nElement, nCol) PRINT_DEVICE(x, ((nElement) / (nCol)), nCol, nCol)
|
|
|
|
// Device function
|
|
#define WITH(blockIdxx, bSync, code) \
|
|
{ \
|
|
if (bSync) \
|
|
{ \
|
|
__syncthreads(); \
|
|
} \
|
|
if (blockIdx.x == (blockIdxx) && blockIdx.y == 0 && blockIdx.z == 0 && threadIdx.x == 0 && threadIdx.y == 0 \
|
|
&& threadIdx.z == 0) \
|
|
{ \
|
|
code \
|
|
} \
|
|
if (bSync) \
|
|
{ \
|
|
__syncthreads(); \
|
|
} \
|
|
}
|
|
|
|
#else
|
|
#define LINE(x)
|
|
#define PRINT(x)
|
|
#define QH(x, y, z, w)
|
|
#define PH2(x, nCol)
|
|
#define PH3(x, nElement, nCol)
|
|
#define PRINT_DEVICE(x, y, z, w)
|
|
#define PD2(x, nCol)
|
|
#define PD3(x, nElement, nCol)
|
|
#define WITH(x, y, z)
|
|
#endif
|
|
|
|
} // namespace kernels
|
|
|
|
TRTLLM_NAMESPACE_END
|