TensorRT-LLMs/cpp/tensorrt_llm/kernels/customAllReduceKernels.h
Yihan Wang 9df4dad3b6
[None][fix] Introduce inline namespace to avoid symbol collision (#9541)
Signed-off-by: Yihan Wang <yihwang@nvidia.com>
2025-12-12 23:32:15 +08:00

201 lines
6.5 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/assert.h"
#include <NvInferRuntime.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <limits>
#include "tensorrt_llm/common/config.h"
#include "tensorrt_llm/common/cudaUtils.h"
TRTLLM_NAMESPACE_BEGIN
namespace kernels
{
constexpr size_t WARP_SIZE = 32;
constexpr size_t MAX_ALL_REDUCE_BLOCKS = 24;
// Use max modules to avoid overflow and ABA problem when the block num changes for barrier_flag
// Not a perfect solution, but it has large chance that it is correct
constexpr size_t MAX_ALL_REDUCE_MODULES = std::numeric_limits<uint32_t>::max() / 6 * 6;
constexpr size_t MAX_RANKS_PER_NODE = 16;
constexpr size_t DEFAULT_BLOCK_SIZE = 512;
namespace reduce_fusion::details
{
static constexpr int kBytesPerAccess = 16;
static constexpr int kWarpSize = 32;
static constexpr int kMaxCtaSize = 1024;
static constexpr int kClusterMaxSize = 8;
static constexpr int kLamportTokenNumThreshold = 16;
static constexpr int kLamportHiddenSizeThreshold = 256;
}; // namespace reduce_fusion::details
// Warning: python definition is in tensorrt_llm/functional.py
// they must be kept in sync
enum class AllReduceStrategyType : int8_t
{
NCCL = 0,
MIN_LATENCY = 1,
UB = 2,
AUTO = 3,
ONESHOT = 4,
TWOSHOT = 5,
LOWPRECISION = 6,
MNNVL = 7,
NCCL_SYMMETRIC = 8,
};
enum class AllReduceStrategyConfig : int8_t
{
USE_MEMCPY = 1 << 0,
PUSH_MODE = 1 << 1,
};
enum class AllReduceFusionOp : int8_t
{
NONE = 0,
RESIDUAL_RMS_NORM = 1,
LAST_PROCESS_FOR_UB = 2,
RESIDUAL_RMS_PREPOST_NORM = 3,
RESIDUAL_RMS_NORM_QUANT_FP8 = 4,
RESIDUAL_RMS_NORM_QUANT_NVFP4 = 5,
RESIDUAL_RMS_NORM_OUT_QUANT_FP8 = 6,
RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4 = 7,
MOE_FINALIZE_ALLREDUCE_RESIDUAL_RMS_NORM = 8,
};
inline std::ostream& operator<<(std::ostream& os, AllReduceFusionOp op)
{
switch (op)
{
case AllReduceFusionOp::NONE: os << "NONE"; break;
case AllReduceFusionOp::RESIDUAL_RMS_NORM: os << "RESIDUAL_RMS_NORM"; break;
case AllReduceFusionOp::LAST_PROCESS_FOR_UB: os << "LAST_PROCESS_FOR_UB"; break;
case AllReduceFusionOp::RESIDUAL_RMS_PREPOST_NORM: os << "RESIDUAL_RMS_PREPOST_NORM"; break;
case AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_FP8: os << "RESIDUAL_RMS_NORM_QUANT_FP8"; break;
case AllReduceFusionOp::RESIDUAL_RMS_NORM_QUANT_NVFP4: os << "RESIDUAL_RMS_NORM_QUANT_NVFP4"; break;
case AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_FP8: os << "RESIDUAL_RMS_NORM_OUT_QUANT_FP8"; break;
case AllReduceFusionOp::RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4: os << "RESIDUAL_RMS_NORM_OUT_QUANT_NVFP4"; break;
case AllReduceFusionOp::MOE_FINALIZE_ALLREDUCE_RESIDUAL_RMS_NORM:
os << "MOE_FINALIZE_ALLREDUCE_RESIDUAL_RMS_NORM";
break;
default: os << "UNKNOWN"; break;
}
return os;
}
inline std::string toString(AllReduceFusionOp op)
{
std::ostringstream oss;
oss << op;
return oss.str();
}
inline std::ostream& operator<<(std::ostream& os, AllReduceStrategyType op)
{
switch (op)
{
case AllReduceStrategyType::NCCL: os << "NCCL"; break;
case AllReduceStrategyType::MIN_LATENCY: os << "MIN_LATENCY"; break;
case AllReduceStrategyType::UB: os << "UB"; break;
case AllReduceStrategyType::AUTO: os << "AUTO"; break;
case AllReduceStrategyType::ONESHOT: os << "ONESHOT"; break;
case AllReduceStrategyType::TWOSHOT: os << "TWOSHOT"; break;
case AllReduceStrategyType::LOWPRECISION: os << "LOWPRECISION"; break;
case AllReduceStrategyType::MNNVL: os << "MNNVL"; break;
case AllReduceStrategyType::NCCL_SYMMETRIC: os << "NCCL_SYMMETRIC"; break;
}
return os;
}
inline std::string toString(AllReduceStrategyType op)
{
std::ostringstream oss;
oss << op;
return oss.str();
}
struct AllReduceFusionParams
{
AllReduceFusionParams()
: bias_buffer(nullptr)
, residual_buffer(nullptr)
, weight_buffer(nullptr)
, weight_buffer_pre_residual_norm(nullptr)
, intermediate_buffer(nullptr)
{
}
// gemm bias
void const* bias_buffer;
// residuial add
void const* residual_buffer;
// rms norm
int hidden_size; // equal to normalized_shape
void const* weight_buffer; // norm elem-wise affine gamma
void const* weight_buffer_pre_residual_norm; // for gemma norm before residual
float eps;
// new residual
void* intermediate_buffer;
void* lamport_peer_comm_buffer_ptrs[MAX_RANKS_PER_NODE * 3];
};
struct AllReduceParams
{
size_t elts_total;
size_t elts_per_rank;
size_t elts_per_block;
size_t rank_offset;
size_t ranks_per_node;
size_t local_rank;
uint32_t* barrier_flag_ptr;
uint32_t* barrier_flag_counter_ptr;
uint32_t* peer_barrier_ptrs_in[MAX_RANKS_PER_NODE];
uint32_t* peer_barrier_ptrs_out[MAX_RANKS_PER_NODE];
void* peer_comm_buffer_ptrs[MAX_RANKS_PER_NODE * 2];
void* local_output_buffer_ptr;
void const* local_input_buffer_ptr;
AllReduceFusionParams fusion_params;
static AllReduceParams deserialize(int64_t* buffer, size_t tpSize, size_t tpRank, nvinfer1::DataType dataType,
int token_num, int hidden_size, AllReduceFusionOp op);
};
bool configurationSupported(AllReduceStrategyType algo, size_t msg_size, size_t n_ranks, nvinfer1::DataType type);
void customAllReduce(kernels::AllReduceParams& params, nvinfer1::DataType dataType, AllReduceStrategyType strat,
AllReduceStrategyConfig config, AllReduceFusionOp fusionOp, cudaStream_t stream);
void residualRmsNorm(
kernels::AllReduceParams& params, nvinfer1::DataType dataType, cudaStream_t stream, AllReduceFusionOp fusionOp);
void lamportInitialize(void* buffer, size_t size, nvinfer1::DataType dataType, cudaStream_t stream);
namespace reduce_fusion
{
bool is_lamport_supported(nvinfer1::DataType dataType, int token_num, int hidden_size);
}
} // namespace kernels
TRTLLM_NAMESPACE_END