TensorRT-LLMs/cpp/tensorrt_llm/kernels/gptKernels.h
Yihan Wang 9df4dad3b6
[None][fix] Introduce inline namespace to avoid symbol collision (#9541)
Signed-off-by: Yihan Wang <yihwang@nvidia.com>
2025-12-12 23:32:15 +08:00

281 lines
10 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/config.h"
#include "tensorrt_llm/kernels/contextFusedMultiHeadAttention/fused_multihead_attention_common.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include <cstdint>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <sstream>
TRTLLM_NAMESPACE_BEGIN
namespace kernels
{
enum class AttentionMaskType
{
// Mask the padded tokens.
PADDING = 0,
// Mask the padded tokens and all the tokens that come after in a sequence.
CAUSAL = 1,
// Only attend to the previous tokens in a fixed-length window.
SLIDING_WINDOW_CAUSAL = 2,
// See ChatGLM-6B mask.
BIDIRECTIONAL = 3,
// See GLM-10B mask.
// TODO: merge this mask into BIDIRECTIONAL
BIDIRECTIONALGLM = 4,
// For Phi-3-small model
BLOCKSPARSE = 5,
// The custom mask input.
CUSTOM_MASK = 6,
};
enum class PositionEmbeddingType : int8_t
{
kLEARNED_ABSOLUTE = 0,
kROPE_GPTJ = 1,
kROPE_GPT_NEOX = 2,
kLONG_ROPE = 3,
// Workflow: (bmm1_output * scale_bmm1 + alibi).
kALIBI = 4,
// Workflow: (bmm1_output + alibi) * scale_bmm1.
kALIBI_WITH_SCALE = 5,
kRELATIVE = 6,
kCHATGLM = 7,
kYARN = 8,
kROPE_M = 9,
};
enum class RotaryScalingType : int8_t
{
kNONE = 0,
kLINEAR = 1,
kDYNAMIC = 2,
kLONG = 3,
kLLAMA3 = 4
};
struct BlockSparseParams
{
int block_size = 1;
int homo_head_pattern = 0;
int num_local_blocks = 0; // Sliding window blocks
int vertical_stride = 0;
auto data() const
{
return std::make_tuple(block_size, homo_head_pattern, num_local_blocks, vertical_stride);
}
__device__ bool computeMask(
int row_idx, int col_idx, int q_seq_length, int kv_seq_length, int num_heads, int head_idx) const
{
bool causal_mask = row_idx < q_seq_length && col_idx < kv_seq_length && col_idx <= row_idx;
// Mask 1/0 decision is made at block_size granularity
int block_row_idx = row_idx / block_size;
int block_col_idx = col_idx / block_size;
bool block_local_mask = (block_row_idx - block_col_idx) < num_local_blocks;
int head_sliding_step = homo_head_pattern ? 0 : std::max(1, int(vertical_stride / num_heads));
bool block_vertical_stride_mask = ((block_col_idx + head_idx * head_sliding_step + 1) % vertical_stride) == 0;
bool is_valid = causal_mask && (block_local_mask || block_vertical_stride_mask);
return is_valid;
}
__device__ bool computeMask(int row_idx, int col_idx, int seq_length, int num_heads, int head_idx) const
{
return computeMask(row_idx, col_idx, seq_length, seq_length, num_heads, head_idx);
}
};
template <typename AttentionMaskDataType>
struct BuildDecoderInfoParams
{
// The offsets to the 1st token in each sequence of Q buffer. Shape: [batchSize+1].
int* seqQOffsets;
// The offsets to the 1st token in each sequence of KV buffer. Shape: [batchSize+1].
int* seqKVOffsets;
// The number of padded tokens in the corresponding padded tensor before the current token, for Decoder. Shape:
// [numTokens].
int* paddingOffsets;
// The batch_idx and token_idx_in_seq for each token. Shape: [numTokens].
int2* tokensInfo;
// The number of padded tokens in the corresponding padded tensor before the current token, for Encoder. Shape:
// [numTokens].
int* encoderPaddingOffsets;
// The offsets to the 1st row in each sequence of packed mask buffer. Shape: [batchSize+1].
int* packedMaskRowOffsets;
// The cumulative average partial sequence lengths for context parallel. Shape: [batchSize+1].
int* seqCpPartialOffsets;
// The mask to mark invalid tokens in Attention - that's not used by the plugins as it can be
// computed on-the-fly. When it's not needed, simply use nullptr.
// Shape: [batchSize, maxSeqLength, maxSeqLength].
AttentionMaskDataType* attentionMask;
// The Q length of each sequence in the batch. Shape: [batchSize].
int const* seqQLengths;
// The KV length of each sequence in the batch. Shape: [batchSize].
int const* seqKVLengths;
// context parallel size
int cpSize;
// The fmha tile counter ptr (set to 0 before fmha).
uint32_t* fmhaTileCounter;
// Scales for fmha only.
// The scale to dequant Q/Kv input.
float const* dequantScaleQkv;
// Whether to use separate scales for Q/K/V.
bool separateQkvScales;
// The scale to quant O output.
float const* quantScaleO;
// The fmha bmm1 host scale (1.0f / sqrt(headSize) by default).
float fmhaHostBmm1Scale;
// The scale after fmha bmm1.
float* fmhaBmm1Scale;
// The scale after fmha bmm2.
float* fmhaBmm2Scale;
// The number of sequences in the batch.
int batchSize;
// The maximum query length of a sequence for Decoder (max_input_length), N for ctx phase, 1 for gen phase.
int maxQSeqLength;
// The maximum query length of a sequence for Encoder, for cross attention (cross_qkv_length).
int maxEncoderQSeqLength;
// The kv cache capacity.
// We will apply the limited_length_causal mask when there are not enough kv cache.
int attentionWindowSize;
// The number of sink tokens in the kv cache.
int sinkTokenLength;
// The number of tokens in total. It's \sum_{ii=0}^{batchSize} seqLengths[ii].
int numTokens;
// Remove padding or not.
bool removePadding;
// The type of attention.
AttentionMaskType attentionMaskType;
// Params for block sparse pattern
BlockSparseParams blockSparseParams;
// Rotary Embedding inv_freq.
// [batch_size, halfRotaryDim] variable across different requests due to dynamic scaling.
float rotaryEmbeddingScale;
float rotaryEmbeddingBase;
int rotaryEmbeddingDim;
RotaryScalingType rotaryScalingType;
float* rotaryEmbeddingInvFreq;
float const* rotaryEmbeddingInvFreqCache;
float2* rotaryEmbeddingCoeffCache;
// Dynamic scaling;
int rotaryEmbeddingMaxPositions;
bool isBuildDecoderInfoKernelNeeded()
{
if (!removePadding)
{
return true;
}
if (maxQSeqLength > 1 && batchSize > 1)
{
return true;
}
if (rotaryScalingType == RotaryScalingType::kDYNAMIC)
{
return true;
}
if (rotaryScalingType != RotaryScalingType::kNONE && rotaryEmbeddingInvFreqCache == nullptr)
{
return true;
}
if (attentionMask != nullptr)
{
return true;
}
if (fmhaTileCounter != nullptr || fmhaBmm1Scale != nullptr || fmhaBmm2Scale != nullptr)
{
return true;
}
// Other cases don't need to call buildDecoderInfo kernel.
return false;
}
std::string toString() const
{
std::stringstream ss;
ss << "BuildDecoderInfoParams ====================" << std::endl;
ss << "seqQOffsets: "
<< *(runtime::ITensor::wrap(
(void*) seqQOffsets, nvinfer1::DataType::kINT32, runtime::ITensor::makeShape({batchSize})))
<< std::endl;
ss << "seqKVOffsets: "
<< *(runtime::ITensor::wrap(
(void*) seqKVOffsets, nvinfer1::DataType::kINT32, runtime::ITensor::makeShape({batchSize})))
<< std::endl;
ss << "paddingOffsets: "
<< *(runtime::ITensor::wrap(
(void*) paddingOffsets, nvinfer1::DataType::kINT32, runtime::ITensor::makeShape({batchSize})))
<< std::endl;
ss << "tokensInfo: "
<< *(runtime::ITensor::wrap(
(void*) tokensInfo, nvinfer1::DataType::kINT32, runtime::ITensor::makeShape({numTokens * 2})))
<< std::endl;
if (encoderPaddingOffsets != nullptr)
{
ss << "encoderPaddingOffsets: "
<< *(runtime::ITensor::wrap((void*) encoderPaddingOffsets, nvinfer1::DataType::kINT32,
runtime::ITensor::makeShape({batchSize})))
<< std::endl;
}
ss << "attentionMask: " << static_cast<void*>(attentionMask) << std::endl;
ss << "seqQLengths: " << seqQLengths << std::endl;
ss << "seqKVLengths: " << seqKVLengths << std::endl;
ss << "fmhaTileCounter: " << fmhaTileCounter << std::endl;
ss << "batchSize: " << batchSize << std::endl;
ss << "maxQSeqLength: " << maxQSeqLength << std::endl;
ss << "maxEncoderQSeqLength: " << maxEncoderQSeqLength << std::endl;
ss << "attentionWindowSize: " << attentionWindowSize << std::endl;
ss << "sinkTokenLength: " << sinkTokenLength << std::endl;
ss << "numTokens: " << numTokens << std::endl;
ss << "removePadding: " << removePadding << std::endl;
ss << "attentionMaskType: " << static_cast<int>(attentionMaskType) << std::endl;
ss << "rotaryEmbeddingScale: " << rotaryEmbeddingScale << std::endl;
ss << "rotaryEmbeddingBase: " << rotaryEmbeddingBase << std::endl;
ss << "rotaryEmbeddingDim: " << rotaryEmbeddingDim << std::endl;
ss << "rotaryScalingType: " << static_cast<int>(rotaryScalingType) << std::endl;
ss << "rotaryEmbeddingInvFreq: " << rotaryEmbeddingInvFreq << std::endl;
ss << "rotaryEmbeddingInvFreqCache: " << rotaryEmbeddingInvFreqCache << std::endl;
ss << "rotaryEmbeddingCoeffCache: " << rotaryEmbeddingCoeffCache << std::endl;
ss << "rotaryEmbeddingMaxPositions: " << rotaryEmbeddingMaxPositions << std::endl;
return ss.str();
}
};
template <typename T>
void invokeBuildDecoderInfo(BuildDecoderInfoParams<T> const& params, cudaStream_t stream);
} // namespace kernels
TRTLLM_NAMESPACE_END