TensorRT-LLMs/cpp/tensorrt_llm/kernels/samplingAirTopPKernels.cu
Yihan Wang 9df4dad3b6
[None][fix] Introduce inline namespace to avoid symbol collision (#9541)
Signed-off-by: Yihan Wang <yihwang@nvidia.com>
2025-12-12 23:32:15 +08:00

1473 lines
54 KiB
Plaintext

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CUDART_VERSION
#error CUDART_VERSION Undefined!
#elif (CUDART_VERSION >= 11050)
#include <cub/cub.cuh>
#else
#include "3rdparty/cub/cub.cuh"
#endif
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/config.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
#include <cuda/atomic>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <cuda/std/limits>
#include <cuda_fp16.h>
using namespace tensorrt_llm::common;
TRTLLM_NAMESPACE_BEGIN
namespace kernels
{
using IdxT = int;
using AccT = float;
template <typename T, typename IdxT, typename AccT>
struct alignas(128) Counter
{
// Address for input value and index
T const* in;
IdxT const* inIdx;
// The original length of the input
IdxT oriLen;
// We are processing the values in multiple passes, from most significant to least
// significant. In each pass, we keep the length of input (`len`) and the `sum` of
// current pass, and update them at the end of the pass.
AccT sum;
IdxT len;
float p;
// `previousLen` is the length of input in previous pass. Note that `previousLen`
// rather than `len` is used for the filtering step because filtering is indeed for
// previous pass.
IdxT previousLen;
// We determine the bits of the k_th value inside the mask processed by the pass. The
// already known bits are stored in `kthValueBits`. It's used to discriminate a
// element is a result (written to `out`), a candidate for next pass (written to
// `outBuf`), or not useful (discarded). The bits that are not yet processed do not
// matter for this purpose.
typename cub::Traits<T>::UnsignedBits kthValueBits;
// Record how many elements have passed filtering. It's used to determine the position
// in the `outBuf` where an element should be written.
alignas(128) IdxT filterCnt;
// For a row inside a batch, we may launch multiple thread blocks. This counter is
// used to determine if the current block is the last running block.
alignas(128) uint32_t finishedBlockCnt;
};
/*******************************Functions*********************************/
using WideT = float4;
//! \brief Provide a ceiling division operation ie. ceil(a / b)
//! \tparam IntType supposed to be only integers for now!
template <typename IntType>
constexpr __host__ __device__ IntType ceilDiv(IntType a, IntType b)
{
return (a + b - 1) / b;
}
//! \brief Provide an alignment function ie. ceil(a / b) * b
//! \tparam IntType supposed to be only integers for now!
template <typename IntType>
constexpr __host__ __device__ IntType alignTo(IntType a, IntType b)
{
return ceilDiv(a, b) * b;
}
//! \brief Calculate the number of buckets based on the number of bits per pass.
//! \tparam BitsPerPass. If BitsPerPass==11, the number of buckets is 2048. If BitsPerPass==8, the number of buckets is
//! 256.
template <int BitsPerPass>
__host__ __device__ int constexpr calcNumBuckets()
{
return 1 << BitsPerPass;
}
//! \brief Calculate the number of passes based on the number of bits per pass.
//! \tparam BitsPerPass. If BitsPerPass==11, the number of passes is 3. If BitsPerPass==8, the number of passes is 4.
template <typename T, int BitsPerPass>
__host__ __device__ int constexpr calcNumPasses()
{
return ceilDiv<int>(sizeof(T) * 8, BitsPerPass);
}
/**
* This implementation processes input from the most to the least significant bit (Bit 0 is the least
* significant (rightmost)). This way, we can skip some passes in the end at the cost of having an unsorted output.
*/
template <typename T, int BitsPerPass>
__device__ int constexpr calcStartBit(int pass)
{
int startBit = static_cast<int>(sizeof(T) * 8) - (pass + 1) * BitsPerPass;
if (startBit < 0)
{
startBit = 0;
}
return startBit;
}
template <typename T, int BitsPerPass>
__device__ uint32_t constexpr calcMask(int pass)
{
static_assert(BitsPerPass <= 31);
int numBits = calcStartBit<T, BitsPerPass>(pass - 1) - calcStartBit<T, BitsPerPass>(pass);
return (1 << numBits) - 1;
}
template <typename T>
__device__ constexpr uint32_t getNumTotalMantissa()
{
if constexpr (std::is_same_v<T, half>)
{
return 10;
}
else if constexpr (std::is_same_v<T, float>)
{
return 23;
}
}
template <typename T>
__device__ uint32_t calcMantissa(T value);
template <>
__device__ uint32_t calcMantissa(float value)
{
union
{
uint32_t bits;
float value;
} input;
input.value = value;
constexpr uint32_t numTotalMantissa = getNumTotalMantissa<float>();
uint32_t mask = (1u << numTotalMantissa) - 1;
return input.bits & mask;
}
__device__ uint32_t calcMantissa(half value)
{
union
{
uint16_t bits;
half value;
} input;
input.value = value;
constexpr uint32_t numTotalMantissa = getNumTotalMantissa<half>();
uint32_t t = 0u | input.bits;
uint32_t mask = (1u << numTotalMantissa) - 1;
return t & mask;
}
template <typename T>
__device__ uint32_t calcExponent(T value);
template <>
__device__ uint32_t calcExponent(float value)
{
union
{
uint32_t bits;
float value;
} input;
input.value = value;
constexpr uint32_t numTotalMantissa = getNumTotalMantissa<float>();
uint32_t mask = (1u << numTotalMantissa) - 1;
return input.bits & ~mask;
}
template <>
__device__ uint32_t calcExponent(half value)
{
union
{
uint16_t bits;
half value;
} input;
input.value = value;
constexpr uint32_t numTotalMantissa = getNumTotalMantissa<half>();
uint32_t t = 0u | input.bits;
uint32_t mask = (1u << numTotalMantissa) - 1;
return t & ~mask;
}
__device__ float calcHalfValue(uint32_t count, uint32_t exponent, uint32_t sign, uint64_t bitSum)
{
constexpr uint32_t numTotalBits = 64; // The bit number of uint64_t
constexpr uint32_t numOffset = 16; // The bits number difference between float and half data type
constexpr uint32_t numTotalMantissaHalf
= getNumTotalMantissa<half>(); // The bit number of mantissa for half data type
constexpr uint32_t numTotalMantissaFloat
= getNumTotalMantissa<float>(); // The bit number of mantissa for float data type
uint64_t extraInMatissa = (bitSum >> numTotalMantissaHalf);
// Count the bit number for exceeding mantissa and the extra unwritten 1s
uint32_t numExtra = 0;
uint32_t numDeNorm = 0;
int numNorm = 0;
uint32_t mask = 0;
extraInMatissa = (exponent == 0) ? extraInMatissa : extraInMatissa + count;
numExtra = numTotalBits - __clzll(extraInMatissa);
numNorm = (exponent == 0) ? 0 : -1;
if (extraInMatissa == 0)
{
numDeNorm = numTotalMantissaHalf - (numTotalBits - __clzll(bitSum));
}
exponent = exponent + ((numExtra + numNorm + 127 - 15 - numDeNorm) << numTotalMantissaHalf);
// As extra bits (extraInMatissa) need to be part of the mantissa, we have to move the current
// mantissa within the range of [0-23]bits.
// This is the only step cause precision loss
uint32_t mantissa;
if (extraInMatissa != 0)
{
int numMove = numTotalMantissaFloat - (numExtra - 1);
mask = (1u << (numExtra - 1)) - 1;
// As the first bit of extraInMatissa is the unwritten 1,
// we need to mask that to zero
extraInMatissa = extraInMatissa & mask;
if (numMove > 0)
{
extraInMatissa = extraInMatissa << numMove;
mask = (1u << numTotalMantissaHalf) - 1;
mantissa = (((bitSum & mask) << (numTotalMantissaFloat - numTotalMantissaHalf)) >> (numExtra - 1))
| extraInMatissa;
}
else
{
mantissa = extraInMatissa >> (-1 * numMove);
}
}
else
{
mask = (1u << numTotalMantissaHalf) - 1;
mantissa = bitSum << (numDeNorm + 1);
mantissa = mantissa & mask;
mantissa = mantissa << (numTotalMantissaFloat - numTotalMantissaHalf);
}
uint32_t bitFloat = (sign << numOffset) | (exponent << (numTotalMantissaFloat - numTotalMantissaHalf)) | mantissa;
return reinterpret_cast<float&>(bitFloat);
}
__device__ float calcFloatValue(uint32_t count, uint32_t exponent, uint64_t bitSum)
{
constexpr uint32_t numTotalBits = 64;
constexpr uint32_t numTotalMantissa = getNumTotalMantissa<float>();
uint64_t extraInMatissa = (bitSum >> numTotalMantissa);
// Count the bit number for exceeding mantissa and the extra unwritten 1s
uint32_t numExtra;
int numNorm = 0;
uint32_t mask = 0;
extraInMatissa = (exponent == 0) ? extraInMatissa : extraInMatissa + count;
numExtra = numTotalBits - __clzll(extraInMatissa);
numNorm = (exponent == 0) ? 0 : -1;
exponent = exponent + ((numExtra + numNorm) << numTotalMantissa);
// As extra integers need to be part of the mantissa, we have to move the current
// mantissa within the range of [0-23]bits.
// This is the only step cause precision loss
uint32_t mantissa;
if (extraInMatissa != 0)
{
int numMove = numTotalMantissa - (numExtra - 1);
// As the first bit of extraInMatissa is the unwritten 1,
// we need to mask that to zero
mask = (1u << (numExtra - 1)) - 1;
extraInMatissa = extraInMatissa & mask;
if (numMove > 0)
{
extraInMatissa = extraInMatissa << numMove;
mask = (1u << numTotalMantissa) - 1;
mantissa = ((bitSum & mask) >> (numExtra - 1)) | extraInMatissa;
}
else
{
mantissa = extraInMatissa >> (-1 * numMove);
}
}
else
{
mantissa = bitSum;
}
uint32_t bitFloat = exponent | mantissa;
return reinterpret_cast<float&>(bitFloat);
}
template <typename T, typename HisT, bool isDeterministic = false>
__device__ constexpr void calcAtomicAdd(HisT* dst, T value)
{
if constexpr (isDeterministic)
{
uint32_t mantissa = calcMantissa(value);
if constexpr (std::is_same_v<T, half>)
{
atomicAdd(dst, mantissa);
}
else
{
// Have to use reinterpret_cast() to convert uint64_t to "unsigned long long"
// Otherwise, the complication will report the follow error:
//"error: no instance of overloaded function "atomicAdd" matches the argument list
// argument types are: (uint64_t *, uint64_t)"
atomicAdd(reinterpret_cast<unsigned long long*>(dst), static_cast<HisT>(mantissa));
}
}
else
{
if constexpr (std::is_same_v<T, half>)
{
atomicAdd(dst, __half2float(value));
}
else
{
atomicAdd(dst, value);
}
}
}
/**
* Use CUB to twiddle bits.
*/
template <typename T>
__device__ typename cub::Traits<T>::UnsignedBits twiddleIn(T key, bool selectMin)
{
auto bits = reinterpret_cast<typename cub::Traits<T>::UnsignedBits&>(key);
bits = cub::Traits<T>::TwiddleIn(bits);
if (!selectMin)
{
bits = ~bits;
}
return bits;
}
template <typename T>
__device__ T twiddleOut(typename cub::Traits<T>::UnsignedBits bits, bool selectMin)
{
if (!selectMin)
{
bits = ~bits;
}
bits = cub::Traits<T>::TwiddleOut(bits);
return reinterpret_cast<T&>(bits);
}
/**
* Find the bucket based on the radix
*/
template <typename T, int BitsPerPass>
__device__ int calcBucket(T x, int startBit, uint32_t mask, bool selectMin)
{
static_assert(BitsPerPass <= sizeof(int) * 8 - 1, "BitsPerPass is too large that the result type could not be int");
return (twiddleIn(x, selectMin) >> startBit) & mask;
}
/**
* This function calculate the bufLen, which is the size of buffer.
* When the number of candidates for next pass exceeds the bufLen, we choose not to store the candidates. Otherwise, we
* will load candidates from the original input data.
*/
template <typename T, typename IdxT>
__host__ __device__ IdxT calcBufLen(IdxT len)
{
// This ratio is calculated based on the element number.
// If we choose to write the buffers, it means (sizeof(T)+sizeof(IdxT))*bufLen bytes of storing and loading.
// To ensure we do not access more than len*sizeof(T) bytes. bufLen should be smaller than:
// len*sizeof(T)/2*(sizeof(T) + sizeof(IdxT)) = len/(2 + sizeof(IdxT) * 2 / sizeof(T))).
IdxT constexpr ratio = 2 + sizeof(IdxT) * 2 / sizeof(T);
// Even such estimation is too conservative (due to the global coalescing access). So based on our experiments, we
// further decrease bufLen by 1/8
IdxT bufLen = len / (ratio * 8);
// Align the address to 256 bytes
bufLen = alignTo(bufLen, 256);
return bufLen;
}
/**
* Use ping-pong buffer and set the inBuf and outBuf based on the pass value.
*/
template <typename T, typename IdxT>
__host__ __device__ void setBufPointers(T const* in, IdxT const* inIdx, T* buf1, IdxT* idxBuf1, T* buf2, IdxT* idxBuf2,
int pass, T const*& inBuf, IdxT const*& inIdxBuf, T*& outBuf, IdxT*& outIdxBuf)
{
if (pass == 0)
{
inBuf = in;
inIdxBuf = nullptr;
outBuf = nullptr;
outIdxBuf = nullptr;
}
else if (pass == 1)
{
inBuf = in;
inIdxBuf = inIdx;
outBuf = buf1;
outIdxBuf = idxBuf1;
}
else if (pass % 2 == 0)
{
inBuf = buf1;
inIdxBuf = idxBuf1;
outBuf = buf2;
outIdxBuf = idxBuf2;
}
else
{
inBuf = buf2;
inIdxBuf = idxBuf2;
outBuf = buf1;
outIdxBuf = idxBuf1;
}
}
//! \brief Map a Func over the input data, using vectorized load instructions if possible.
//! \tparam T element type
//! \tparam IdxT indexing type
//! \tparam Func void (T x, IdxT idx)
//! \param threadRank rank of the calling thread among all participating threads
//! \param numThreads number of the threads that participate in processing
//! \param in the input data
//! \param len the number of elements to read
//! \param f the lambda taking two arguments (T x, IdxT idx)
template <typename T, typename IdxT, typename Func>
__device__ void vectorizedProcess(size_t threadRank, size_t numThreads, T const* in, IdxT len, Func f)
{
int constexpr WARP_SIZE = 32;
if constexpr (sizeof(T) >= sizeof(WideT))
{
for (IdxT i = threadRank; i < len; i += numThreads)
{
f(in[i], i);
}
}
else
{
static_assert(sizeof(WideT) % sizeof(T) == 0);
int constexpr itemsPerScalar = sizeof(WideT) / sizeof(T);
// TODO: it's UB
union
{
WideT scalar;
T array[itemsPerScalar];
} wide;
int skipCnt = (reinterpret_cast<size_t>(in) % sizeof(WideT))
? ((sizeof(WideT) - reinterpret_cast<size_t>(in) % sizeof(WideT)) / sizeof(T))
: 0;
if (skipCnt > len)
{
skipCnt = len;
}
WideT const* inCast = reinterpret_cast<decltype(inCast)>(in + skipCnt);
IdxT const lenCast = (len - skipCnt) / itemsPerScalar;
for (IdxT i = threadRank; i < lenCast; i += numThreads)
{
wide.scalar = inCast[i];
IdxT const real_i = skipCnt + i * itemsPerScalar;
#pragma unroll
for (int j = 0; j < itemsPerScalar; ++j)
{
f(wide.array[j], real_i + j);
}
}
static_assert(WARP_SIZE >= itemsPerScalar);
// and because itemsPerScalar > skipCnt, WARP_SIZE > skipCnt
// no need to use loop
if (threadRank < skipCnt)
{
f(in[threadRank], threadRank);
}
// because lenCast = (len - skipCnt) / itemsPerScalar,
// lenCast * itemsPerScalar + itemsPerScalar > len - skipCnt;
// and so
// len - (skipCnt + lenCast * itemsPerScalar) < itemsPerScalar <=
// WARP_SIZE no need to use loop
IdxT const remain_i = skipCnt + lenCast * itemsPerScalar + threadRank;
if (remain_i < len)
{
f(in[remain_i], remain_i);
}
}
}
/**
* Fused filtering of the current pass and building histogram for the next pass (see steps 4 & 1 in `airTopPSampling`
* description).
*/
template <typename T, typename IdxT, typename AccT, typename HisT, int BitsPerPass, bool isDeterministic = false>
__device__ __forceinline__ void filterAndHistogram(T const* inBuf, IdxT const* inIdxBuf, T* outBuf, IdxT* outIdxBuf,
int previousLen, Counter<T, IdxT, AccT>* counter, HisT* histogram, IdxT* countHistogram, HisT* histogramSmem,
IdxT* countHistogramSmem, int pass, float* outputLogProbs, float* cumLogProbs, IdxT** ids, IdxT const* endIds,
IdxT* sequenceLengths, FinishedState* finishedOutput, int const batchId, int maxBatchSize, bool earlyStop)
{
static_assert(std::is_same_v<T, half> | std::is_same_v<T, float>, "T needs to be either half or float");
static_assert(std::is_same_v<AccT, float>, "AccT needs to be float");
int constexpr numBuckets = calcNumBuckets<BitsPerPass>();
bool constexpr selectMin = false;
for (IdxT i = threadIdx.x; i < numBuckets; i += blockDim.x)
{
histogramSmem[i] = 0;
countHistogramSmem[i] = 0;
}
__syncthreads();
int const startBit = calcStartBit<T, BitsPerPass>(pass);
uint32_t const mask = calcMask<T, BitsPerPass>(pass);
if (pass == 0)
{
// Passed to vectorizedProcess, this function executes in all blocks in
// parallel, i.e. the work is split along the input (both, in batches and
// chunks of a single row). Later, the histograms are merged using
// atomicAdd.
auto f = [selectMin, startBit, mask, histogramSmem, countHistogramSmem](T value, IdxT)
{
int bucket = calcBucket<T, BitsPerPass>(value, startBit, mask, selectMin);
calcAtomicAdd<T, HisT, isDeterministic>(histogramSmem + bucket, value);
atomicAdd(countHistogramSmem + bucket, static_cast<IdxT>(1));
};
vectorizedProcess(static_cast<size_t>(blockIdx.x) * blockDim.x + threadIdx.x,
static_cast<size_t>(blockDim.x) * gridDim.x, inBuf, previousLen, f);
}
else
{
IdxT* pFilterCnt = &counter->filterCnt;
auto const kthValueBits = counter->kthValueBits;
int const previousStartBit = calcStartBit<T, BitsPerPass>(pass - 1);
// See the remark above on the distributed execution of `f` using
// vectorizedProcess.
auto f = [inIdxBuf, outBuf, outIdxBuf, selectMin, startBit, mask, previousStartBit, kthValueBits, pFilterCnt,
histogramSmem, countHistogramSmem, outputLogProbs, cumLogProbs, ids, endIds, sequenceLengths,
finishedOutput, batchId, maxBatchSize, earlyStop](T value, IdxT i)
{
auto const previousBits = (twiddleIn(value, selectMin) >> previousStartBit) << previousStartBit;
if (previousBits == kthValueBits)
{
if (earlyStop)
{
int const currentStep = sequenceLengths ? sequenceLengths[batchId] : 0;
IdxT index = inIdxBuf ? inIdxBuf[i] : i;
ids[batchId][currentStep] = index;
float valueFloat;
if constexpr (std::is_same_v<T, half>)
{
valueFloat = __half2float(value);
}
else
{
valueFloat = value;
}
epilogue(valueFloat, index, outputLogProbs, cumLogProbs, endIds, sequenceLengths, finishedOutput,
batchId, maxBatchSize);
}
if (outBuf)
{
IdxT pos = atomicAdd(pFilterCnt, static_cast<IdxT>(1));
outBuf[pos] = value;
outIdxBuf[pos] = inIdxBuf ? inIdxBuf[i] : i;
}
int bucket = calcBucket<T, BitsPerPass>(value, startBit, mask, selectMin);
calcAtomicAdd<T, HisT, isDeterministic>(histogramSmem + bucket, value);
atomicAdd(countHistogramSmem + bucket, static_cast<IdxT>(1));
}
};
vectorizedProcess(static_cast<size_t>(blockIdx.x) * blockDim.x + threadIdx.x,
static_cast<size_t>(blockDim.x) * gridDim.x, inBuf, previousLen, f);
}
__syncthreads();
if (earlyStop)
{
return;
}
// merge histograms produced by individual blocks
for (int i = threadIdx.x; i < numBuckets; i += blockDim.x)
{
if (histogramSmem[i] != 0)
{
if constexpr ((isDeterministic) && (std::is_same_v<T, float>) )
{
// Have to use reinterpret_cast() to convert uint64_t to "unsigned long long"
// Otherwise, the complication will report the follow error:
//"error: no instance of overloaded function "atomicAdd" matches the argument list
// argument types are: (uint64_t *, uint64_t)"
atomicAdd(reinterpret_cast<unsigned long long*>(histogram + i), histogramSmem[i]);
}
else
{
atomicAdd(histogram + i, histogramSmem[i]);
}
}
if (countHistogramSmem[i] != 0)
{
atomicAdd(countHistogram + i, countHistogramSmem[i]);
}
}
}
/**
* Replace histogram with its own prefix sum (step 2 in `airTopPSampling` description)
*/
template <typename IdxT, int BitsPerPass, int BlockSize>
__device__ void scan(IdxT volatile* histogram, IdxT* histogramOut)
{
int constexpr numBuckets = calcNumBuckets<BitsPerPass>();
if constexpr (numBuckets >= BlockSize)
{
static_assert(numBuckets % BlockSize == 0);
int constexpr itemsPerThread = numBuckets / BlockSize;
typedef cub::BlockLoad<IdxT, BlockSize, itemsPerThread, cub::BLOCK_LOAD_TRANSPOSE> BlockLoad;
typedef cub::BlockStore<IdxT, BlockSize, itemsPerThread, cub::BLOCK_STORE_TRANSPOSE> BlockStore;
typedef cub::BlockScan<IdxT, BlockSize> BlockScan;
__shared__ union
{
typename BlockLoad::TempStorage load;
typename BlockScan::TempStorage scan;
typename BlockStore::TempStorage store;
} tempStorage;
IdxT threadData[itemsPerThread];
BlockLoad(tempStorage.load).Load(histogram, threadData);
__syncthreads();
BlockScan(tempStorage.scan).InclusiveSum(threadData, threadData);
__syncthreads();
BlockStore(tempStorage.store).Store(histogramOut, threadData);
}
else
{
typedef cub::BlockScan<IdxT, BlockSize> BlockScan;
__shared__ typename BlockScan::TempStorage tempStorage;
IdxT threadData = 0;
if (threadIdx.x < numBuckets)
{
threadData = histogram[threadIdx.x];
}
BlockScan(tempStorage).InclusiveSum(threadData, threadData);
__syncthreads();
if (threadIdx.x < numBuckets)
{
histogramOut[threadIdx.x] = threadData;
}
}
}
/**
* Computes sequenceLength, finished state, outputLogProbs, and cumLogProbs.
*/
template <typename T, typename IdxT>
__device__ void epilogue(T const value, IdxT const index, float* outputLogProbs, float* cumLogProbs, IdxT const* endIds,
IdxT* sequenceLengths, FinishedState* finishedOutput, int const batchId, int maxBatchSize)
{
if (outputLogProbs != nullptr || cumLogProbs != nullptr)
{
float res = logf(value);
if (outputLogProbs)
{
auto const curLen = sequenceLengths ? sequenceLengths[batchId] : 0;
outputLogProbs[curLen * maxBatchSize + batchId] = res;
}
if (cumLogProbs)
{
cumLogProbs[batchId] += res;
}
}
if (endIds && index == endIds[batchId])
{
if (finishedOutput != nullptr)
{
finishedOutput[batchId].setFinishedEOS();
}
// Do not increase seq len when EOS is generated. Seq len should always contain only tokens to be outputted
}
else if (sequenceLengths != nullptr)
{
// We don't need to set output finished state as it is assumed to be in non finished state
sequenceLengths[batchId] += 1;
}
}
/**
* Find the target element.
* (steps 4 in `airTopPSampling` description)
*/
template <typename T, typename IdxT, typename AccT, int BitsPerPass, int BlockSize, bool isDeterministic = false>
__device__ void lastFilter(T const* inBuf, IdxT const* inIdxBuf, IdxT currentLen, Counter<T, IdxT, AccT>* counter,
float* outputLogProbs, float* cumLogProbs, IdxT** ids, IdxT const* endIds, IdxT* sequenceLengths,
FinishedState* finishedOutput, int const batchId, int maxBatchSize, IdxT* lastIdxBuf, IdxT* countHistogram)
{
auto const kthValueBits = counter->kthValueBits;
auto const equalValue = twiddleOut<T>(kthValueBits, false);
int const currentStep = sequenceLengths ? sequenceLengths[batchId] : 0;
IdxT* outIdx = &ids[batchId][currentStep];
float equalValueFloat;
if constexpr (std::is_same_v<T, half>)
{
equalValueFloat = __half2float(equalValue);
}
else
{
equalValueFloat = equalValue;
}
if constexpr (!isDeterministic)
{
for (IdxT i = threadIdx.x; i < currentLen; i += blockDim.x)
{
if (inBuf[i] == equalValue)
{
*outIdx = inIdxBuf ? inIdxBuf[i] : i;
break;
}
}
}
else
{
IdxT const bufLen = calcBufLen<T>(counter->oriLen);
IdxT neededNumOfKth = counter->sum > 0 ? ceil(counter->sum / equalValueFloat) : 1;
if (counter->len < neededNumOfKth)
{
neededNumOfKth = counter->len;
}
if (neededNumOfKth < bufLen)
{
for (int i = threadIdx.x; i < neededNumOfKth; i += blockDim.x)
{
lastIdxBuf[i] = cuda::std::numeric_limits<IdxT>::max();
}
__threadfence_block();
__syncthreads();
cuda::atomic_ref<IdxT, cuda::thread_scope_block> refLast(lastIdxBuf[neededNumOfKth - 1]);
for (IdxT i = threadIdx.x; i < currentLen; i += blockDim.x)
{
if (inBuf[i] == equalValue)
{
IdxT newIdx = inIdxBuf ? inIdxBuf[i] : i;
if (newIdx < refLast.load(cuda::memory_order_relaxed))
{
for (int j = 0; j < neededNumOfKth; j++)
{
IdxT preIdx = atomicMin_block(&lastIdxBuf[j], newIdx);
if (preIdx > newIdx)
{
newIdx = preIdx;
}
}
}
}
}
__syncthreads();
if (threadIdx.x == 0)
{
*outIdx = refLast.load(cuda::memory_order_relaxed);
}
}
else
{
int numPass = calcNumPasses<IdxT, BitsPerPass>();
int constexpr numBuckets = calcNumBuckets<BitsPerPass>();
__shared__ typename cub::Traits<IdxT>::UnsignedBits kthValueBitsIdx;
__shared__ IdxT neededNumOfKthSmem;
if (threadIdx.x == 0)
{
kthValueBitsIdx = 0;
neededNumOfKthSmem = neededNumOfKth;
}
__syncthreads();
for (int pass = 0; pass < numPass; pass++)
{
for (IdxT i = threadIdx.x; i < numBuckets; i += blockDim.x)
{
countHistogram[i] = 0;
}
__syncthreads();
int preNeededNumOfKth = neededNumOfKthSmem;
int const startBit = calcStartBit<IdxT, BitsPerPass>(pass);
uint32_t const mask = calcMask<IdxT, BitsPerPass>(pass);
for (IdxT j = threadIdx.x; j < currentLen; j += blockDim.x)
{
if (inBuf[j] == equalValue)
{
IdxT newIdx = inIdxBuf ? inIdxBuf[j] : j;
bool isQualified = (pass == 0) ? true : false;
if (pass > 0)
{
int const previousStartBit = calcStartBit<IdxT, BitsPerPass>(pass - 1);
auto const previousBits = (twiddleIn(newIdx, true) >> previousStartBit) << previousStartBit;
if (previousBits == kthValueBitsIdx)
{
isQualified = true;
}
}
if (isQualified)
{
int bucket = calcBucket<IdxT, BitsPerPass>(newIdx, startBit, mask, true);
atomicAdd(countHistogram + bucket, static_cast<IdxT>(1));
}
}
} // end histogram
__syncthreads();
scan<IdxT, BitsPerPass, BlockSize>(countHistogram, countHistogram); // prefix sum
__syncthreads();
// Locate the bucket
for (int i = threadIdx.x; i < numBuckets; i += blockDim.x)
{
IdxT prev = (i == 0) ? 0 : countHistogram[i - 1];
IdxT cur = countHistogram[i];
// one and only one thread will satisfy this condition, so counter is
// written by only one thread
if (prev < preNeededNumOfKth && preNeededNumOfKth <= cur)
{
neededNumOfKthSmem = neededNumOfKthSmem - prev;
typename cub::Traits<IdxT>::UnsignedBits bucket = i;
kthValueBitsIdx |= bucket << startBit;
}
}
__syncthreads();
}
if (threadIdx.x == 0)
{
*outIdx = twiddleOut<IdxT>(kthValueBitsIdx, true);
}
}
}
__syncthreads();
if (threadIdx.x == 0)
{
epilogue(equalValueFloat, *outIdx, outputLogProbs, cumLogProbs, endIds, sequenceLengths, finishedOutput,
batchId, maxBatchSize);
}
}
/******************************Kernel**********************************/
/**
* We call this parallel top-p algorithm AIR Top-P, because this method is based on our previous work called AIR Top-K.
* Details about AIR Top-K can be found here https://dl.acm.org/doi/10.1145/3581784.360706, the open-source code is here
* https://github.com/rapidsai/raft/blob/main/cpp/include/raft/matrix/detail/select_radix.cuh
*
* It is expected to call this kernel multiple times (passes), in each pass we process a radix,
* going from the most significant towards the least significant bits (MSD).
*
* Conceptually, each pass consists of 4 steps:
*
* 1. Calculate histogram
* First, transform bits into a digit, the value of which is in the range
* [0, 2^{BITS_PER_PASS}-1]. Then count the frequency of each digit value along with the summation of corresponding
* elements and the result is a countHistogram and histogram. That is, countHistogram[i] contains the count of inputs
* having value i.
*
* 2. Scan the histogram
* Inclusive prefix sum is computed for the histogram. After this step, histogram[i] contains
* the prefix-sum of inputs having value <= i.
*
* 3. Find the bucket j of the histogram that just exceed the p*total_sum value falls into
*
* 4. Filtering
* Input elements whose digit value <j are the top-p elements. Since the k-th value must be in
* the bucket j, we write all elements in bucket j into a intermediate buffer out_buf. For the
* next pass, these elements are used as input, and we update the counter->sum accordingly. T
*
* In the implementation, the filtering step is delayed to the next pass so the filtering and
* histogram computation are fused. In this way, inputs are read once rather than twice.
*
* During the filtering step, we won't write candidates (elements in bucket j) to `out_buf` if the
* number of candidates is larger than the length of `out_buf` (this could happen when the leading
* bits of input values are almost the same). And then in the next pass, inputs are read from `in`
* rather than from `in_buf`. The benefit is that we can save the cost of writing candidates and
* their indices.
*/
template <typename T, typename IdxT, typename AccT, typename HisT, int BitsPerPass, int BlockSize,
bool isFusedFilter = false, bool isDeterministic = false>
__global__ void airTopPSampling(Counter<T, IdxT, AccT>* counters, HisT* histograms, IdxT* countHistograms, IdxT** ids,
int* sequenceLengths, FinishedState const* finishedInput, FinishedState* finishedOutput, float* cumLogProbs,
float* outputLogProbs, IdxT const* endIds, int const maxBatchSize, bool const* skipDecode, int const pass, T* buf1,
IdxT* idxBuf1, T* buf2, IdxT* idxBuf2, int32_t const* batchSlots)
{
static_assert(std::is_same_v<T, half> | std::is_same_v<T, float>, "T needs to be either half or float");
static_assert(std::is_same_v<AccT, float>, "AccT needs to be float");
int const tid = threadIdx.x;
int const batchId = blockIdx.y;
auto const batchSlot = batchSlots ? batchSlots[batchId] : batchId;
auto counter = counters + batchId;
// Skip kernel if this sampling method is not chosen
FinishedState const finishState = finishedInput != nullptr ? finishedInput[batchSlot] : FinishedState::empty();
if ((skipDecode != nullptr && skipDecode[batchSlot]) || (finishState.isSkipDecoding()))
{
return;
}
// Exit early if sequence has finished
if (finishState.isFinished())
{
if (pass == 0 && tid == 0)
{
if (finishedOutput != nullptr)
{
finishedOutput[batchSlot] = finishState;
}
}
return;
}
/// Set length
AccT currentSum;
IdxT previousLen;
IdxT currentLen;
if (pass == 0)
{
currentSum = 0;
previousLen = counter->len;
// Need to do this so setting counter->previousLen for the next pass is correct.
// This value is meaningless for pass 0, but it's fine because pass 0 won't be the
// last pass in this implementation so pass 0 won't hit the "if (pass ==
// numPasses - 1)" branch.
currentLen = counter->len;
}
else
{
currentSum = counter->sum;
currentLen = counter->len;
previousLen = counter->previousLen;
}
if (currentLen == 0)
{
return;
}
bool const earlyStop = (currentLen == 1);
IdxT const bufLen = calcBufLen<T>(counter->oriLen);
/// Set address
T const* inBuf = nullptr;
IdxT const* inIdxBuf = nullptr;
T* outBuf = nullptr;
IdxT* outIdxBuf = nullptr;
setBufPointers(counter->in, counter->inIdx, buf1 + bufLen * batchId, idxBuf1 + bufLen * batchId,
buf2 + bufLen * batchId, idxBuf2 + bufLen * batchId, pass, inBuf, inIdxBuf, outBuf, outIdxBuf);
// "previousLen > bufLen" means previous pass skips writing buffer
if (pass == 0 || pass == 1 || previousLen > bufLen)
{
inBuf = counter->in;
inIdxBuf = counter->inIdx;
previousLen = counter->oriLen;
}
// "currentLen > bufLen" means current pass will skip writing buffer
if (pass == 0 || currentLen > bufLen)
{
outBuf = nullptr;
outIdxBuf = nullptr;
}
int constexpr numBuckets = calcNumBuckets<BitsPerPass>();
auto histogram = histograms + batchId * numBuckets;
auto countHistogram = countHistograms + batchId * numBuckets;
__shared__ HisT histogramSmem[numBuckets];
__shared__ IdxT countHistogramSmem[numBuckets];
AccT* histValueSmem = reinterpret_cast<AccT*>(histogramSmem);
filterAndHistogram<T, IdxT, AccT, HisT, BitsPerPass, isDeterministic>(inBuf, inIdxBuf, outBuf, outIdxBuf,
previousLen, counter, histogram, countHistogram, histogramSmem, countHistogramSmem, pass, outputLogProbs,
cumLogProbs, ids, endIds, sequenceLengths, finishedOutput, batchSlot, maxBatchSize, earlyStop);
__syncthreads();
__threadfence();
bool isLastBlock = false;
if (threadIdx.x == 0)
{
uint32_t finished = atomicInc(&counter->finishedBlockCnt, gridDim.x - 1);
isLastBlock = (finished == (gridDim.x - 1));
}
if (__syncthreads_or(isLastBlock))
{
if (earlyStop)
{
if (threadIdx.x == 0)
{
// avoid duplicated epilgue()
counter->previousLen = 0;
counter->len = 0;
}
return;
}
if constexpr (isDeterministic)
{
for (int i = threadIdx.x; i < numBuckets; i += blockDim.x)
{
uint64_t value = (uint64_t) histogram[i];
IdxT count = countHistogram[i];
if (count != 0)
{
uint32_t startBit = calcStartBit<T, BitsPerPass>(pass);
[[maybe_unused]] float bucketValueFloat;
if constexpr (std::is_same_v<T, half>)
{
// To acquire the summation in single-precision format, we need to get the original exponent
// value first counter->kthValueBits stores the bits selected by previous pass, which contains
// the bit corresponds to the exponent value
uint16_t bucketValue = counter->kthValueBits;
// For the first pass, different bucket indices correspond to different exponents.
// The bucket index can be used to deduce the exponent.
if (pass == 0)
{
// Right shift the bucket index with startBit bits (5 bits for half-precision when pass==0),
// so that the bucket index fills the bit related to exponent.
bucketValue = i << startBit;
}
uint32_t exponent = calcExponent(twiddleOut<T>(bucketValue, false));
uint32_t mask = (1u << (sizeof(half) * CHAR_BIT - 1)) - 1;
uint32_t sign = exponent & (~mask);
exponent = exponent & mask;
float tmp = calcHalfValue((uint32_t) count, exponent, sign, value);
histValueSmem[i] = tmp;
}
else
{
// To acquire the summation in single-precision format, we need to get the original exponent
// value first
uint32_t bucketValue = counter->kthValueBits;
if (pass == 0)
{
// Right shift the bucket index with startBit bits (22 bits for single-precision when
// pass==0), so that the bucket index fills the bit related to exponent.
bucketValue = i << startBit;
}
bucketValueFloat = twiddleOut<T>(bucketValue, false);
uint32_t exponent = calcExponent(bucketValueFloat);
histValueSmem[i] = calcFloatValue((uint32_t) count, exponent, value);
}
}
else
{
histValueSmem[i] = 0.0f;
}
}
}
// To avoid the error related to the prefix sum from cub, we find the bucket sequentially.
int constexpr WARP_SIZE = 32;
int constexpr WARP_COUNT = numBuckets / WARP_SIZE;
namespace cg = cooperative_groups;
cg::thread_block block = cg::this_thread_block();
cg::thread_block_tile<32> warp = cg::tiled_partition<32>(block);
AccT* histPtr = isDeterministic ? histValueSmem : reinterpret_cast<AccT*>(histogram);
__shared__ AccT warpSum[WARP_COUNT];
__shared__ cuda::atomic<AccT, cuda::thread_scope_block> blockSum;
if constexpr (BitsPerPass != 11)
{
for (int i = threadIdx.x; i < numBuckets; i += BlockSize)
{
warpSum[i] = 0;
}
__syncthreads();
}
// Acquire the summation of each 32 buckets
for (int i = threadIdx.x; i < numBuckets; i += BlockSize)
{
reduce_store_async(warp, warpSum + i / WARP_SIZE, histPtr[i], cg::plus<float>{});
}
__syncthreads();
// Acquire the summation of all the 2048 buckets
if (threadIdx.x < WARP_SIZE)
{
reduce_store_async(warp, blockSum, warpSum[threadIdx.x], cg::plus<float>{});
if constexpr (BitsPerPass == 11)
{
reduce_update_async(warp, blockSum, warpSum[threadIdx.x + WARP_SIZE], cg::plus<float>{});
}
}
__syncthreads();
// Update currentSum
if (pass == 0)
{
currentSum = blockSum * counter->p;
}
if (threadIdx.x == 0)
{
AccT prev = 0;
// Add 32 elements each step
int iStep = 0;
int targetStep = 0;
for (; iStep < WARP_COUNT; iStep++)
{
if (warpSum[iStep])
{
targetStep = iStep;
if ((prev + warpSum[iStep]) >= currentSum)
{
break;
}
prev += warpSum[iStep];
}
}
int targetIdx = 0;
for (int i = targetStep * WARP_SIZE; i < numBuckets; i++)
{
if (countHistogram[i])
{
targetIdx = i;
if ((prev + histPtr[i]) >= currentSum)
{
break;
}
prev += histPtr[i];
}
}
counter->sum = currentSum - prev; // how many values still are there to find
counter->len = countHistogram[targetIdx]; // cur - prev; // number of values in next pass
typename cub::Traits<T>::UnsignedBits bucket = targetIdx;
int startBit = calcStartBit<T, BitsPerPass>(pass);
counter->kthValueBits |= bucket << startBit;
}
__syncthreads();
int constexpr numPasses = calcNumPasses<T, BitsPerPass>();
// reset for next pass
if (pass != numPasses - 1)
{
for (int i = threadIdx.x; i < numBuckets; i += blockDim.x)
{
histogram[i] = 0;
countHistogram[i] = 0;
}
}
if (threadIdx.x == 0)
{
counter->previousLen = currentLen;
// not necessary for the last pass, but put it here anyway
counter->filterCnt = 0;
}
if (pass == numPasses - 1)
{
// Used when isDeterministic==true
// idxBuf1 and idxBuf2 are ping-pong buffers used in previous iterations to store candidates.
// In the last pass (pass==2 for single-precision and pass==1 for half-precision),
// we reuse the buffer didn't store the candidates (idxBuf1 for single-precision and idxBuf2 for
// half-precision) to help find the correct index of the result.
[[maybe_unused]] IdxT* lastIdxBuf
= (pass % 2 == 0) ? idxBuf1 + bufLen * batchId : idxBuf2 + bufLen * batchId;
if constexpr (isFusedFilter)
{
lastFilter<T, IdxT, AccT, BitsPerPass, BlockSize, isDeterministic>(outBuf ? outBuf : inBuf,
outIdxBuf ? outIdxBuf : inIdxBuf, outBuf ? currentLen : counter->oriLen, counter, outputLogProbs,
cumLogProbs, ids, endIds, sequenceLengths, finishedOutput, batchSlot, maxBatchSize, lastIdxBuf,
countHistogramSmem);
__syncthreads();
}
}
}
}
/**
* Initialize the Counter<T, IdxT, AccT> and the histogram and countHistogram.
*/
template <typename T, typename IdxT, typename AccT, typename HisT, int BitsPerPass, int BlockSize>
__global__ void airTopPInitialize(Counter<T, IdxT, AccT>* counters, int const batchSize, int const len, T const* in,
IdxT const* inIdx, float const* topPs, curandState_t* curandState, float const* randomVals, HisT* histograms,
IdxT* countHistograms, int32_t const* batchSlots)
{
auto const batchIdx = blockIdx.x;
auto const batchSlot = batchSlots ? batchSlots[batchIdx] : batchIdx;
Counter<T, IdxT, AccT>* counter = counters + batchIdx;
IdxT offset = batchIdx * len;
IdxT bufOffset = batchIdx * calcBufLen<T>(len);
if (threadIdx.x == 0)
{
counter->in = in + offset;
counter->inIdx = nullptr;
if (inIdx)
{
counter->inIdx = inIdx + offset;
}
counter->len = len;
counter->oriLen = len;
counter->previousLen = len;
float const probThreshold = topPs[batchSlot];
auto const randomNumber = randomVals ? randomVals[batchSlot] : curand_uniform(curandState + batchSlot);
float const randP = randomNumber * probThreshold;
counter->p = randP;
counter->sum = 0;
counter->kthValueBits = 0;
counter->finishedBlockCnt = 0;
counter->filterCnt = 0;
}
int constexpr numBuckets = calcNumBuckets<BitsPerPass>();
HisT* histogram = histograms + batchIdx * numBuckets;
for (int i = threadIdx.x; i < numBuckets; i += BlockSize)
{
histogram[i] = 0;
}
IdxT* countHistogram = nullptr;
if (countHistograms)
{
countHistogram = countHistograms + batchIdx * numBuckets;
for (int i = threadIdx.x; i < numBuckets; i += BlockSize)
{
countHistogram[i] = 0;
}
}
}
/*
* Calculate the number of blocks based on the batchSize and len to avoid tailing effect.
*/
template <typename T>
uint32_t calcAirTopPBlockNum(int batchSize, int len, int smCnt, bool isDeterministic)
{
int constexpr BitsPerPass = 11;
int constexpr BlockSize = 512;
int constexpr VECTORIZED_READ_SIZE = 16;
static_assert(VECTORIZED_READ_SIZE / sizeof(T) >= 1);
TLLM_CHECK_WITH_INFO(
smCnt > 0, "AIR Top-P needs the count of multiprocessor to calculate the proper block dimension settings");
int activeBlocks;
if (isDeterministic)
{
using HisT = std::conditional_t<std::is_same_v<T, float>, uint64_t, uint32_t>;
cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&activeBlocks, airTopPSampling<T, IdxT, AccT, HisT, BitsPerPass, BlockSize, false, true>, BlockSize, 0);
}
else
{
cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&activeBlocks, airTopPSampling<T, IdxT, AccT, float, BitsPerPass, BlockSize, false, false>, BlockSize, 0);
}
activeBlocks *= smCnt;
IdxT bestNumBlocks = 0;
float bestTailWavePenalty = 1.0f;
IdxT const maxNumBlocks = ceilDiv<IdxT>(len, VECTORIZED_READ_SIZE / sizeof(T) * BlockSize);
for (int numWaves = 1;; ++numWaves)
{
IdxT numBlocks = std::min(maxNumBlocks, static_cast<IdxT>(std::max(numWaves * activeBlocks / batchSize, 1)));
IdxT itemsPerThread = ceilDiv<IdxT>(len, numBlocks * BlockSize);
itemsPerThread = alignTo<IdxT>(itemsPerThread, VECTORIZED_READ_SIZE / sizeof(T));
numBlocks = ceilDiv<IdxT>(len, itemsPerThread * BlockSize);
float actualNumWaves = static_cast<float>(numBlocks) * batchSize / activeBlocks;
float tailWavePenalty = (ceilf(actualNumWaves) - actualNumWaves) / ceilf(actualNumWaves);
// 0.15 is determined experimentally. It also ensures breaking the loop
// early, e.g. when numWaves > 7, tailWavePenalty will always <0.15
if (tailWavePenalty < 0.15)
{
bestNumBlocks = numBlocks;
break;
}
else if (tailWavePenalty < bestTailWavePenalty)
{
bestNumBlocks = numBlocks;
bestTailWavePenalty = tailWavePenalty;
}
if (numBlocks == maxNumBlocks)
{
break;
}
}
return bestNumBlocks;
}
template <typename T, bool isDeterministic = false>
[[nodiscard]] std::vector<size_t> getAirTopPWorkspaceSizes(int32_t batchSize, int32_t vocabSize)
{
using HisT
= std::conditional_t<isDeterministic, std::conditional_t<std::is_same_v<T, float>, uint64_t, uint32_t>, float>;
int constexpr BitsPerPass = 11;
int constexpr numBuckets = calcNumBuckets<BitsPerPass>();
IdxT const bufLen = calcBufLen<T>(vocabSize);
size_t countersSize = sizeof(Counter<T, IdxT, AccT>) * batchSize;
size_t histogramsSize = sizeof(HisT) * numBuckets * batchSize;
size_t countHistogramsSize = sizeof(IdxT) * numBuckets * batchSize;
size_t buf1Size = sizeof(T) * bufLen * batchSize;
size_t idxBuf1Size = sizeof(IdxT) * bufLen * batchSize;
size_t buf2Size = sizeof(T) * bufLen * batchSize;
size_t idxBuf2Size = sizeof(IdxT) * bufLen * batchSize;
std::vector<size_t> sizes
= {countersSize, histogramsSize, countHistogramsSize, buf1Size, idxBuf1Size, buf2Size, idxBuf2Size};
return sizes;
}
template std::vector<size_t> getAirTopPWorkspaceSizes<float, true>(int32_t batchSize, int32_t vocabSize);
template std::vector<size_t> getAirTopPWorkspaceSizes<float, false>(int32_t batchSize, int32_t vocabSize);
template std::vector<size_t> getAirTopPWorkspaceSizes<half, true>(int32_t batchSize, int32_t vocabSize);
template std::vector<size_t> getAirTopPWorkspaceSizes<half, false>(int32_t batchSize, int32_t vocabSize);
template <typename T, bool isDeterministic = false>
void invokeAirTopPSamplingWithDeterministicPara(TopPSamplingKernelParams<T> const& params, cudaStream_t stream)
{
using HisT
= std::conditional_t<isDeterministic, std::conditional_t<std::is_same_v<T, float>, uint64_t, uint32_t>, float>;
static_assert(std::is_same_v<T, half> | std::is_same_v<T, float>, "T needs to be either half or float");
static_assert(std::is_same_v<AccT, float>, "AccT needs to be float");
TLLM_CHECK_WITH_INFO(((std::is_same_v<T, half>) &&(params.vocabSizePadded < pow(2, 22)) && isDeterministic)
|| ((std::is_same_v<T, float>) &&(params.vocabSizePadded < pow(2, 41)) && isDeterministic)
|| (!isDeterministic),
"For Deterministic AIR Top-P, the maximum vocab_size we support is pow(2,22) for half-precision and pow(2,41) "
"for single-precision");
IdxT const vocabSize = params.vocabSizePadded;
int constexpr BitsPerPass = 11;
int constexpr SAMPLING_BLOCK_SIZE = 512;
int constexpr THREADS_PER_CTA_TOP_P_INIT = 1024;
Counter<T, IdxT, AccT>* counters = nullptr;
HisT* histograms = nullptr;
IdxT* countHistograms = nullptr;
T* buf1 = nullptr;
IdxT* idxBuf1 = nullptr;
T* buf2 = nullptr;
IdxT* idxBuf2 = nullptr;
auto const workspaceSizes = getAirTopPWorkspaceSizes<T, isDeterministic>(params.batchSize, vocabSize);
calcAlignedPointers(params.workspace, workspaceSizes)(
counters, histograms, countHistograms, buf1, idxBuf1, buf2, idxBuf2);
airTopPInitialize<T, IdxT, AccT, HisT, BitsPerPass, THREADS_PER_CTA_TOP_P_INIT>
<<<params.batchSize, THREADS_PER_CTA_TOP_P_INIT, 0, stream>>>(counters, params.batchSize, vocabSize,
params.probs, nullptr, params.topPs, params.curandState, params.randomVals, histograms, countHistograms,
params.batchSlots);
dim3 grid(params.blockNum, params.batchSize);
// Sample with Top P given sorted tokens
int constexpr numPasses = calcNumPasses<T, BitsPerPass>();
auto kernel = airTopPSampling<T, IdxT, AccT, HisT, BitsPerPass, SAMPLING_BLOCK_SIZE, false, isDeterministic>;
for (int pass = 0; pass < numPasses; ++pass)
{
if (pass == numPasses - 1)
{
kernel = airTopPSampling<T, IdxT, AccT, HisT, BitsPerPass, SAMPLING_BLOCK_SIZE, true, isDeterministic>;
}
kernel<<<grid, SAMPLING_BLOCK_SIZE, 0, stream>>>(counters, histograms, countHistograms, params.outputIdsPtrs,
params.sequenceLength, params.finishedInput, params.finishedOutput, params.cumLogProbs,
params.outputLogProbs, params.endIds, params.maxBatchSize, params.skipDecode, pass, buf1, idxBuf1, buf2,
idxBuf2, params.batchSlots);
}
}
template <typename T>
void invokeBatchAirTopPSampling(TopPSamplingKernelParams<T> const& params, cudaStream_t stream)
{
if (params.isDeterministic)
{
invokeAirTopPSamplingWithDeterministicPara<T, true>(params, stream);
}
else
{
invokeAirTopPSamplingWithDeterministicPara<T, false>(params, stream);
}
}
template void invokeBatchAirTopPSampling(TopPSamplingKernelParams<float> const& params, cudaStream_t stream);
template void invokeBatchAirTopPSampling(TopPSamplingKernelParams<half> const& params, cudaStream_t stream);
template <typename T>
size_t getAirTopPWorkspaceSize(int32_t batchSize, int32_t vocabSizePadded, bool isDeterministic)
{
std::vector<size_t> workspaceSizes;
if (isDeterministic == true)
{
workspaceSizes = getAirTopPWorkspaceSizes<T, true>(batchSize, vocabSizePadded);
}
else
{
workspaceSizes = getAirTopPWorkspaceSizes<T, false>(batchSize, vocabSizePadded);
}
return calcAlignedSize(workspaceSizes, 256);
}
template size_t getAirTopPWorkspaceSize<float>(int32_t batchSize, int32_t vocabSizePadded, bool isDeterministic);
template size_t getAirTopPWorkspaceSize<half>(int32_t batchSize, int32_t vocabSizePadded, bool isDeterministic);
template uint32_t calcAirTopPBlockNum<float>(int batchSize, int len, int smCnt, bool isDeterministic);
template uint32_t calcAirTopPBlockNum<half>(int batchSize, int len, int smCnt, bool isDeterministic);
} // namespace kernels
TRTLLM_NAMESPACE_END