mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
525 lines
21 KiB
Plaintext
525 lines
21 KiB
Plaintext
/*
|
|
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#ifndef CUDART_VERSION
|
|
#error CUDART_VERSION Undefined!
|
|
#elif (CUDART_VERSION >= 11050)
|
|
#include <cub/cub.cuh>
|
|
|
|
#else
|
|
#include "3rdparty/cub/cub.cuh"
|
|
#endif
|
|
|
|
#include "tensorrt_llm/common/config.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
|
|
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
|
|
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
TRTLLM_NAMESPACE_BEGIN
|
|
|
|
namespace kernels
|
|
{
|
|
__global__ void topPInitialize(TokenIdType* topPIdValBuf, SizeType32* topPOffsetBuf, SizeType32* beginTopPOffsetBuf,
|
|
SizeType32 batchSize, SizeType32 vocabSize)
|
|
{
|
|
auto const tid = static_cast<SizeType32>(threadIdx.x);
|
|
auto const bid = static_cast<SizeType32>(blockIdx.x);
|
|
|
|
if (bid == 0)
|
|
{
|
|
for (auto i = tid; i < batchSize + 1; i += static_cast<SizeType32>(blockDim.x))
|
|
{
|
|
// Inclusive sum of offsets to vocab rows
|
|
topPOffsetBuf[i] = i * vocabSize;
|
|
beginTopPOffsetBuf[i] = topPOffsetBuf[i];
|
|
}
|
|
}
|
|
|
|
auto index = tid + bid * static_cast<SizeType32>(blockDim.x);
|
|
|
|
while (index < batchSize * vocabSize)
|
|
{
|
|
// Set value at {bi, vi} position to vi
|
|
topPIdValBuf[index] = index % vocabSize;
|
|
index += static_cast<SizeType32>(blockDim.x * gridDim.x);
|
|
}
|
|
}
|
|
|
|
void invokeTopPInitialize(TokenIdType* topPIdValBuf, SizeType32* topPOffsetBuf, SizeType32* beginTopPOffsetBuf,
|
|
SizeType32 batchSize, SizeType32 vocabSize, cudaStream_t stream)
|
|
{
|
|
// vocabSize: the column number of logits_buffer for top_p sampling
|
|
// TODO: launch based on available resources
|
|
topPInitialize<<<32, 512, 0, stream>>>(topPIdValBuf, topPOffsetBuf, beginTopPOffsetBuf, batchSize, vocabSize);
|
|
}
|
|
|
|
template <typename T, int THREADBLOCK_SIZE>
|
|
__launch_bounds__(THREADBLOCK_SIZE) __global__ void topPBeamTopKKernel(T const* probs, // prob.
|
|
TokenIdType* topKTmpIdBuf, T* topKTmpValBuf, FinishedState const* finishedInput, SizeType32 vocabSize,
|
|
SizeType32* offsetBuf, SizeType32* beginOffsetBuf, float const* topPs, bool const* skipDecode,
|
|
SizeType32 const* batchSlots)
|
|
{
|
|
/**
|
|
* Kernel performs top 1 search and saves the token with largest probability if it exceeds probability threshold
|
|
*/
|
|
SizeType32 constexpr MAX_K = 1;
|
|
auto const threadId = static_cast<SizeType32>(threadIdx.x);
|
|
auto const batchId = static_cast<SizeType32>(blockIdx.x);
|
|
auto const batchSlot = batchSlots[batchId];
|
|
|
|
// Skip decoding kernel if configured
|
|
if ((skipDecode != nullptr && skipDecode[batchSlot])
|
|
|| (finishedInput != nullptr && finishedInput[batchSlot].isSkipDecoding()))
|
|
{
|
|
// Required to skip radix sort
|
|
beginOffsetBuf[batchId] += vocabSize;
|
|
return;
|
|
}
|
|
|
|
float pThreshold = topPs[batchSlot];
|
|
|
|
typedef cub::BlockReduce<TopK<T, MAX_K>, THREADBLOCK_SIZE> BlockReduce;
|
|
__shared__ typename BlockReduce::TempStorage temp_storage;
|
|
TopK<T, MAX_K> partial;
|
|
|
|
bool const IS_FP16 = std::is_same<T, half>::value;
|
|
T const MAX_T_VAL = (IS_FP16) ? HALF_FLT_MAX : FLT_MAX;
|
|
|
|
#pragma unroll
|
|
for (SizeType32 i = 0; i < MAX_K; ++i)
|
|
{
|
|
partial.p[i] = -1;
|
|
partial.u[i] = -MAX_T_VAL;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (SizeType32 elemId = static_cast<SizeType32>(threadId); elemId < vocabSize; elemId += THREADBLOCK_SIZE)
|
|
{
|
|
auto index = elemId + batchId * vocabSize;
|
|
partial.insert(probs[index], elemId);
|
|
}
|
|
|
|
TopK<T, MAX_K> total = BlockReduce(temp_storage).Reduce(partial, reduce_topk_op<T, MAX_K>);
|
|
|
|
if (threadId == 0)
|
|
{
|
|
beginOffsetBuf[batchId] = offsetBuf[batchId];
|
|
T sumProb = (T) (0.0f);
|
|
|
|
#pragma unroll
|
|
for (SizeType32 i = 0; i < MAX_K; i++)
|
|
{
|
|
sumProb += total.u[i];
|
|
}
|
|
|
|
if ((float) sumProb >= pThreshold)
|
|
{
|
|
beginOffsetBuf[batchId] += vocabSize;
|
|
auto index = batchId * vocabSize;
|
|
|
|
#pragma unroll
|
|
for (SizeType32 i = 0; i < MAX_K; ++i)
|
|
{
|
|
topKTmpIdBuf[index + i] = total.p[i];
|
|
topKTmpValBuf[index + i] = total.u[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct BlockPrefixCallbackOp
|
|
{
|
|
// Running prefix
|
|
float running_total;
|
|
|
|
// Constructor
|
|
__device__ BlockPrefixCallbackOp(float running_total)
|
|
: running_total(running_total)
|
|
{
|
|
}
|
|
|
|
// Callback operator to be entered by the first warp of threads in the block.
|
|
// Thread-0 is responsible for returning a value for seeding the block-wide
|
|
// scan.
|
|
__device__ float operator()(float block_aggregate)
|
|
{
|
|
float old_prefix = running_total;
|
|
running_total += block_aggregate;
|
|
return old_prefix;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
__device__ void epilogue(SizeType32 batchId, SizeType32 currentStep, SizeType32 offset, TokenIdType** ids,
|
|
TokenIdType const* sortedIdVals, T const* sortedProbs, float* cumLogProbs, float* outputLogProbs,
|
|
TokenIdType const* endIds, SizeType32* sequenceLengths, FinishedState* finishedOutput, SizeType32 maxBatchSize)
|
|
{
|
|
ids[batchId][currentStep] = sortedIdVals[offset];
|
|
|
|
if (cumLogProbs != nullptr || outputLogProbs != nullptr)
|
|
{
|
|
float lprob = logf(sortedProbs[offset]);
|
|
if (cumLogProbs != nullptr)
|
|
{
|
|
cumLogProbs[batchId] += lprob;
|
|
}
|
|
if (outputLogProbs != nullptr)
|
|
{
|
|
outputLogProbs[sequenceLengths[batchId] * maxBatchSize + batchId] = lprob;
|
|
}
|
|
}
|
|
if (finishedOutput != nullptr && endIds != nullptr)
|
|
{
|
|
if (ids[batchId][currentStep] == endIds[batchId])
|
|
{
|
|
finishedOutput[batchId].setFinishedEOS();
|
|
// Do not increase seq len when EOS is generated. Seq len should always contain only tokens to be outputted
|
|
}
|
|
else
|
|
{
|
|
// We don't need to set output finished state as it is assumed to be in non finished state
|
|
sequenceLengths[batchId] += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, int blockSize>
|
|
__global__ void topPSsampling(T const* sortedProbs, TokenIdType const* sortedIdVals, TokenIdType* ids,
|
|
TokenIdType** idsPtrs, SizeType32* sequenceLength, FinishedState const* finishedInput,
|
|
FinishedState* finishedOutput, float* cumLogProbs, float* outputLogProbs, SizeType32 const* beginOffsetBuf,
|
|
SizeType32 const* offsetBuf, SizeType32 vocabSize, curandState_t* curandState, float const* randomVals,
|
|
float const* topPs, TokenIdType const* endIds, SizeType32 maxBatchSize, bool const* skipDecode,
|
|
SizeType32 const* batchSlots, bool returnAllSelectedTokensFlag, bool const* returnAllSelectedTokensPerSlot,
|
|
SizeType32 maxSeqLen, TokenIdType* outputIdCurrentStep, bool const* skipOutputIdCurrentStep)
|
|
{
|
|
/**
|
|
* Each block processes one request row sorted in descending order by probabilities.
|
|
* All threads within block compute running sum of probabilities until one of the threads exceeds the randomly
|
|
* chosen probability threshold. Thread that crossed probaility threshold writes the corresponding token to the
|
|
* output.
|
|
*/
|
|
|
|
__shared__ float randNumS;
|
|
__shared__ float randNumS2;
|
|
|
|
auto const tid = static_cast<SizeType32>(threadIdx.x);
|
|
auto const batchId = static_cast<SizeType32>(blockIdx.x);
|
|
auto const batchSlot = batchSlots[batchId];
|
|
// Skip kernel if this sampling method is not chosen
|
|
FinishedState const finishState = finishedInput != nullptr ? finishedInput[batchSlot] : FinishedState::empty();
|
|
if ((skipDecode != nullptr && skipDecode[batchSlot]) || (finishState.isSkipDecoding()))
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Exit early if sequence has finished
|
|
if (finishState.isFinished())
|
|
{
|
|
if (tid == 0)
|
|
{
|
|
if (finishedOutput != nullptr)
|
|
{
|
|
finishedOutput[batchSlot] = finishState;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
auto const probThreshold = topPs[batchSlot];
|
|
auto const currentStep = sequenceLength == nullptr ? 0 : sequenceLength[batchSlot];
|
|
auto* outputIdsRequestPtr = idsPtrs == nullptr ? ids + batchSlot * maxSeqLen : idsPtrs[batchSlot];
|
|
auto const returnAllSelectedTokens = returnAllSelectedTokensPerSlot != nullptr
|
|
? returnAllSelectedTokensPerSlot[batchSlot]
|
|
: returnAllSelectedTokensFlag;
|
|
bool const sampleTokenInSelected = returnAllSelectedTokens && outputIdCurrentStep && curandState
|
|
&& skipOutputIdCurrentStep && !skipOutputIdCurrentStep[batchSlot];
|
|
|
|
// With P in (0.0; 1.0] we draw a random number P' in range (0.0; P]
|
|
// We will sum all probs moving from the largest probability to the smallest and
|
|
// will choose the token which probability makes cumulative probability sum to exceed P'
|
|
if (threadIdx.x == 0)
|
|
{
|
|
// if we want to return all top p indices, we should not do random sampling for probThreshold
|
|
auto const randomNumber = randomVals ? randomVals[batchSlot] : curand_uniform(curandState + batchSlot);
|
|
randNumS = returnAllSelectedTokens ? probThreshold : randomNumber * probThreshold;
|
|
randNumS2 = sampleTokenInSelected ? curand_uniform(curandState + batchSlot) * probThreshold : 0.0f;
|
|
}
|
|
|
|
// if beginOffsetBuf and offsetBuf of sorting have same value,
|
|
// this means that we have find best one in topPBeamTopKKernel
|
|
// So, we can skip this sampling.
|
|
if (beginOffsetBuf[batchId] == offsetBuf[batchId])
|
|
{
|
|
if (tid == 0)
|
|
{
|
|
auto offset = batchId * vocabSize;
|
|
if (returnAllSelectedTokens)
|
|
{
|
|
outputIdsRequestPtr[currentStep] = sortedIdVals[offset];
|
|
}
|
|
else
|
|
{
|
|
epilogue(batchSlot, currentStep, offset, idsPtrs, sortedIdVals, sortedProbs, cumLogProbs,
|
|
outputLogProbs, endIds, sequenceLength, finishedOutput, maxBatchSize);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
typedef cub::BlockScan<float, blockSize> BlockScan;
|
|
__shared__ typename BlockScan::TempStorage tempStorage;
|
|
// Initialize running total
|
|
BlockPrefixCallbackOp prefixOp(0);
|
|
|
|
__syncthreads();
|
|
|
|
auto offset = batchId * vocabSize;
|
|
outputIdsRequestPtr[currentStep] = sortedIdVals[offset];
|
|
auto end = ((vocabSize + blockSize - 1) / blockSize) * blockSize;
|
|
SizeType32 selectedTokenId = 0;
|
|
// Cumulative sum
|
|
float threadOffset = 0;
|
|
SizeType32 count = 0;
|
|
// For sampleTokenInSelected == True
|
|
SizeType32 selectedTokenId2 = 0;
|
|
SizeType32 count2 = 0;
|
|
for (int vi = tid; vi < end; vi += blockSize)
|
|
{
|
|
auto threadProb = (vi < vocabSize) ? static_cast<float>(sortedProbs[offset + vi]) : 0.f;
|
|
BlockScan(tempStorage).InclusiveSum(threadProb, threadOffset, prefixOp);
|
|
count = __syncthreads_count(randNumS <= threadOffset);
|
|
selectedTokenId = vi;
|
|
if (sampleTokenInSelected && count2 == 0)
|
|
{
|
|
count2 = __syncthreads_count(randNumS2 <= threadOffset);
|
|
selectedTokenId2 = vi;
|
|
}
|
|
if (count != 0)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
selectedTokenId = min(selectedTokenId, vocabSize - 1);
|
|
|
|
if (returnAllSelectedTokens)
|
|
{
|
|
__shared__ SizeType32 sharedSelectedTokenId;
|
|
if (sampleTokenInSelected && (threadIdx.x == min(blockDim.x - count2, blockDim.x - 1)))
|
|
{
|
|
selectedTokenId2 = min(selectedTokenId2, vocabSize - 1);
|
|
outputIdCurrentStep[batchSlot] = sortedIdVals[offset + selectedTokenId2];
|
|
}
|
|
if (threadIdx.x == min(blockDim.x - count, blockDim.x - 1))
|
|
{
|
|
sharedSelectedTokenId = selectedTokenId;
|
|
}
|
|
__syncthreads();
|
|
for (int vi = tid; vi <= sharedSelectedTokenId; vi += blockSize)
|
|
{
|
|
outputIdsRequestPtr[vi] = sortedIdVals[offset + vi];
|
|
}
|
|
if (tid == 0 && sharedSelectedTokenId != end - 1)
|
|
{
|
|
outputIdsRequestPtr[sharedSelectedTokenId + 1] = -1; // a boundary to record the end of all selected top Ps.
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// select first thread exceeded the prob threshold or the last thread in case of P=1.0f
|
|
if (threadIdx.x == min(blockDim.x - count, blockDim.x - 1))
|
|
{
|
|
epilogue(batchSlot, currentStep, offset + selectedTokenId, idsPtrs, sortedIdVals, sortedProbs, cumLogProbs,
|
|
outputLogProbs, endIds, sequenceLength, finishedOutput, maxBatchSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<size_t> getTopPWorkspaceSizes(SizeType32 batchSize, SizeType32 vocabSize)
|
|
{
|
|
auto const sortedLogProbBufSize = sizeof(T) * batchSize * vocabSize;
|
|
auto const sortedIdValsBufSize = sizeof(TokenIdType) * batchSize * vocabSize;
|
|
auto const topPIdValsSize = sizeof(TokenIdType) * batchSize * vocabSize;
|
|
auto const topPOffsetSize = sizeof(SizeType32) * (batchSize + 1);
|
|
auto const beginTopPOffsetSize = sizeof(SizeType32) * (batchSize + 1);
|
|
|
|
size_t cubTempStorageSize;
|
|
tensorrt_llm::common::check_cuda_error(cub::DeviceSegmentedRadixSort::SortPairsDescending(nullptr,
|
|
cubTempStorageSize, static_cast<T*>(nullptr), static_cast<T*>(nullptr), static_cast<SizeType32*>(nullptr),
|
|
static_cast<SizeType32*>(nullptr), static_cast<SizeType32>(vocabSize * batchSize), batchSize,
|
|
static_cast<SizeType32*>(nullptr), static_cast<SizeType32*>(nullptr),
|
|
0, // begin_bit
|
|
sizeof(T) * 8, // end_bit = sizeof(KeyT) * 8
|
|
0)); // cudaStream_t
|
|
|
|
return {cubTempStorageSize, sortedLogProbBufSize, sortedIdValsBufSize, topPIdValsSize, topPOffsetSize,
|
|
beginTopPOffsetSize};
|
|
}
|
|
|
|
template std::vector<size_t> getTopPWorkspaceSizes<float>(SizeType32 batchSize, SizeType32 vocabSize);
|
|
template std::vector<size_t> getTopPWorkspaceSizes<half>(SizeType32 batchSize, SizeType32 vocabSize);
|
|
|
|
[[nodiscard]] std::vector<size_t> getTopPInitWorkspaceSizes(SizeType32 batchSize)
|
|
{
|
|
auto const tempTopKsBufSize = batchSize * sizeof(SizeType32);
|
|
auto const tempTopPsBufSize = batchSize * sizeof(float);
|
|
auto const tempTopPDecayBufSize = batchSize * sizeof(float);
|
|
auto const tempTopPMinBufSize = batchSize * sizeof(float);
|
|
auto const tempTopPResetIdsBufSize = batchSize * sizeof(TokenIdType);
|
|
|
|
return {tempTopKsBufSize, tempTopPsBufSize, tempTopPDecayBufSize, tempTopPMinBufSize, tempTopPResetIdsBufSize};
|
|
}
|
|
|
|
template <typename T>
|
|
size_t getTopPWorkspaceSize(SizeType32 batchSize, SizeType32 vocabSizePadded)
|
|
{
|
|
auto const workspaceSizes = getTopPWorkspaceSizes<T>(batchSize, vocabSizePadded);
|
|
auto const initWorkspaceSizes = getTopPInitWorkspaceSizes(batchSize);
|
|
return std::max(tensorrt_llm::common::calcAlignedSize(workspaceSizes, 256),
|
|
tensorrt_llm::common::calcAlignedSize(initWorkspaceSizes, 256));
|
|
}
|
|
|
|
template size_t getTopPWorkspaceSize<float>(SizeType32 batchSize, SizeType32 vocabSizePadded);
|
|
template size_t getTopPWorkspaceSize<half>(SizeType32 batchSize, SizeType32 vocabSizePadded);
|
|
|
|
template <typename T>
|
|
void invokeBatchTopPSampling(TopPSamplingKernelParams<T> const& params, cudaStream_t stream)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
params.checkParams();
|
|
|
|
auto const workspaceSizes = getTopPWorkspaceSizes<T>(params.batchSize, params.vocabSizePadded);
|
|
|
|
std::vector<void*> alignedPointers;
|
|
calcAlignedPointers(alignedPointers, params.workspace, workspaceSizes);
|
|
|
|
auto cubTempStorage = static_cast<void*>(alignedPointers[0]);
|
|
auto sortedProbs = static_cast<T*>(alignedPointers[1]);
|
|
auto sortedIdVals = static_cast<TokenIdType*>(alignedPointers[2]);
|
|
auto idVals = static_cast<TokenIdType*>(alignedPointers[3]);
|
|
auto offsetBuf = static_cast<SizeType32*>(alignedPointers[4]);
|
|
auto beginOffsetBuf = static_cast<SizeType32*>(alignedPointers[5]);
|
|
|
|
invokeTopPInitialize(idVals, offsetBuf, beginOffsetBuf, params.batchSize, params.vocabSizePadded, stream);
|
|
sync_check_cuda_error(stream);
|
|
|
|
SizeType32 constexpr BLOCK_SIZE = 256;
|
|
// Performs Top K=1 search.
|
|
// If the most probable token exceeds P, we skip sorting by setting beginOffsetBuf[bi] = offsetBuf[bi]
|
|
topPBeamTopKKernel<T, BLOCK_SIZE><<<params.batchSize, BLOCK_SIZE, 0, stream>>>(params.probs, sortedIdVals,
|
|
sortedProbs, params.finishedInput, params.vocabSizePadded, offsetBuf, beginOffsetBuf, params.topPs,
|
|
params.skipDecode, params.batchSlots);
|
|
sync_check_cuda_error(stream);
|
|
|
|
// Sort tokens by probability in descending order
|
|
auto cubWorkspaceSize = workspaceSizes[0];
|
|
check_cuda_error(cub::DeviceSegmentedRadixSort::SortPairsDescending(cubTempStorage, cubWorkspaceSize, params.probs,
|
|
sortedProbs, idVals, sortedIdVals, params.vocabSizePadded * params.batchSize, params.batchSize, beginOffsetBuf,
|
|
offsetBuf + 1,
|
|
0, // begin_bit
|
|
static_cast<SizeType32>(sizeof(T) * 8), // end_bit = sizeof(KeyT) * 8
|
|
stream)); // cudaStream_t
|
|
|
|
SizeType32 constexpr SAMPLING_BLOCK_SIZE = 256;
|
|
dim3 grid(params.batchSize);
|
|
// Sample with Top P given sorted tokens
|
|
topPSsampling<T, SAMPLING_BLOCK_SIZE><<<grid, SAMPLING_BLOCK_SIZE, 0, stream>>>(sortedProbs, sortedIdVals,
|
|
params.outputIds, params.outputIdsPtrs, params.sequenceLength, params.finishedInput, params.finishedOutput,
|
|
params.cumLogProbs, params.outputLogProbs, beginOffsetBuf, offsetBuf + 1, params.vocabSizePadded,
|
|
params.curandState, params.randomVals, params.topPs, params.endIds, params.maxBatchSize, params.skipDecode,
|
|
params.batchSlots, params.returnAllSelectedTokens, params.returnAllSelectedTokensPerSlot, params.maxSeqLen,
|
|
params.outputIdCurrentStep, params.skipOutputIdCurrentStep);
|
|
sync_check_cuda_error(stream);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template void invokeBatchTopPSampling(TopPSamplingKernelParams<float> const& params, cudaStream_t stream);
|
|
|
|
template void invokeBatchTopPSampling(TopPSamplingKernelParams<half> const& params, cudaStream_t stream);
|
|
|
|
__global__ void computeToppDecay(float* runtimeTopP, float const* runtimeInitialTopP, TokenIdType const** outputIds,
|
|
float const* topPDecay, float const* topPMin, TokenIdType const* topPResetIds, SizeType32 const* sequenceLengths,
|
|
SizeType32 const* batchSlots, SizeType32 localBatchSize)
|
|
{
|
|
auto const idx = static_cast<SizeType32>(blockDim.x * blockIdx.x + threadIdx.x);
|
|
if (idx >= localBatchSize)
|
|
{
|
|
return;
|
|
}
|
|
auto const batchSlot = batchSlots[idx];
|
|
auto const currentStep{sequenceLengths[batchSlot]};
|
|
if (outputIds[batchSlot][currentStep] == topPResetIds[batchSlot])
|
|
{
|
|
runtimeTopP[batchSlot] = runtimeInitialTopP[batchSlot];
|
|
}
|
|
else
|
|
{
|
|
runtimeTopP[batchSlot] = max(runtimeTopP[batchSlot] * topPDecay[batchSlot], topPMin[batchSlot]);
|
|
}
|
|
}
|
|
|
|
void invokeComputeToppDecay(float* runtimeTopP, float const* runtimeInitialTopP, TokenIdType const** outputIds,
|
|
float const* topPDecay, float const* topPMin, TokenIdType const* topPResetIds, SizeType32 const* sequenceLengths,
|
|
SizeType32 const* batchSlots, SizeType32 localBatchSize, cudaStream_t stream)
|
|
{
|
|
dim3 block(std::min(localBatchSize, 512));
|
|
dim3 grid((localBatchSize + block.x - 1) / block.x);
|
|
computeToppDecay<<<grid, block, 0, stream>>>(runtimeTopP, runtimeInitialTopP, outputIds, topPDecay, topPMin,
|
|
topPResetIds, sequenceLengths, batchSlots, localBatchSize);
|
|
}
|
|
|
|
__global__ void setTopPRuntimeArgs(SizeType32 batchSize, SizeType32 const* batchSlots,
|
|
ScatterDecodingParamEntry<SizeType32> topK, ScatterDecodingParamEntry<float> topP, bool* skipDecode,
|
|
float* initialTopPBuf)
|
|
{
|
|
auto index = static_cast<SizeType32>(blockIdx.x * blockDim.x + threadIdx.x);
|
|
for (SizeType32 bi = index; bi < batchSize; bi += static_cast<SizeType32>(gridDim.x * blockDim.x))
|
|
{
|
|
setupTopKTopPRuntimeArgOne(bi, topK, topP, batchSlots, nullptr, skipDecode, initialTopPBuf);
|
|
}
|
|
}
|
|
|
|
void invokeSetTopPRuntimeArgs(SizeType32 batchSize, ScatterDecodingParamEntry<SizeType32> topK,
|
|
ScatterDecodingParamEntry<float> topP, bool* skipDecodePtr, float* initialTopPPtr, SizeType32 const* batchSlotsPtr,
|
|
bool onDevice, cudaStream_t stream)
|
|
{
|
|
if (onDevice)
|
|
{
|
|
dim3 block(std::min(static_cast<uint32_t>(batchSize), 256u));
|
|
dim3 grid(divUp(static_cast<uint32_t>(batchSize), block.x));
|
|
setTopPRuntimeArgs<<<grid, block, 0, stream>>>(
|
|
batchSize, batchSlotsPtr, topK, topP, skipDecodePtr, initialTopPPtr);
|
|
}
|
|
else
|
|
{
|
|
for (int bi = 0; bi < batchSize; ++bi)
|
|
{
|
|
setupTopKTopPRuntimeArgOne(bi, topK, topP, batchSlotsPtr, nullptr, skipDecodePtr, nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace kernels
|
|
|
|
TRTLLM_NAMESPACE_END
|