mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
166 lines
7.5 KiB
C++
166 lines
7.5 KiB
C++
/*
|
|
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "banWordsLayer.h"
|
|
#include "tensorrt_llm/common/nvtxUtils.h"
|
|
#include "tensorrt_llm/kernels/banBadWords.h"
|
|
#include "tensorrt_llm/kernels/banRepeatNgram.h"
|
|
#include "tensorrt_llm/layers/defaultDecodingParams.h"
|
|
#include "tensorrt_llm/layers/layerUtils.h"
|
|
|
|
using namespace tensorrt_llm::kernels;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm::layers
|
|
{
|
|
|
|
template <typename T>
|
|
BanWordsLayer<T>::BanWordsLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain,
|
|
std::shared_ptr<BufferManager> bufferManager)
|
|
: BaseLayer(decoderDomain, bufferManager)
|
|
, mDecodingMode(mode)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
allocateBuffer();
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void BanWordsLayer<T>::allocateBuffer()
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
if (mDecodingMode.isUseNoRepeatNgramSize())
|
|
{
|
|
mNoRepeatNgramSizeDevice
|
|
= mBufferManager->gpu(ITensor::makeShape({mDecoderDomain.getBatchSize()}), TRTDataType<SizeType32>::value);
|
|
}
|
|
|
|
mNoRepeatNgramSize = mBufferManager->pinnedPool(
|
|
ITensor::makeShape({mDecoderDomain.getBatchSize()}), TRTDataType<SizeType32>::value);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void BanWordsLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, TensorConstPtr batchSlots,
|
|
std::shared_ptr<BaseSetupParams> const& baseSetupParams,
|
|
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
NVTX3_SCOPED_RANGE(BanWordsLayer_setup);
|
|
|
|
auto setupParams = std::dynamic_pointer_cast<DynamicDecodeSetupParams>(baseSetupParams);
|
|
auto const& banWordsParams = setupParams->banWordsParams;
|
|
TLLM_CHECK_WITH_INFO(banWordsParams, "banWordsParams for setup is not set");
|
|
bool const useNoRepeatNgramSize
|
|
= mDecodingMode.isUseNoRepeatNgramSize() && banWordsParams->noRepeatNgramSize.has_value();
|
|
FillBuffers const fillBuffers{batchSize, mDecoderDomain.getBatchSize(), mBufferManager};
|
|
mUseNoRepeatNgramSize |= useNoRepeatNgramSize;
|
|
if (mUseNoRepeatNgramSize)
|
|
{
|
|
fillBuffers(banWordsParams->noRepeatNgramSize, DefaultDecodingParams::getNoRepeatNgramSize(),
|
|
mNoRepeatNgramSize, mNoRepeatNgramSizeDevice, batchSlots,
|
|
std::make_pair(0.f, std::numeric_limits<float>::max()), "no_repeat_ngram_size");
|
|
}
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void BanWordsLayer<T>::banRepeatNGrams(TensorPtr const& logits, std::shared_ptr<BaseDecodingOutputs> const& outputs,
|
|
std::shared_ptr<DecodingInputs> const& inputs, BufferConstPtr const& batchSlots, BufferPtr noRepeatNgramSizeDevice,
|
|
DecoderDomain const& decoderDomain, SizeType32 maxSeqLen, bool useNoRepeatNgramSize)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
if (useNoRepeatNgramSize)
|
|
{
|
|
// auto const maxStep = inputs->step; // TODO Should we use step? but current inputs->step is always 0.
|
|
auto const maxStep = maxSeqLen;
|
|
// Temporary variables to store dereferenced inputs
|
|
auto logitsPtr = bufferCast<T>(*logits);
|
|
auto outputIdsPtr = bufferCast<TokenIdType const*>(*outputs->outputIdsPtr);
|
|
auto finishedPtr
|
|
= reinterpret_cast<FinishedState const*>(bufferCastOrNull<FinishedState::UnderlyingType>(inputs->finished));
|
|
auto parentIdsPtr = bufferCast<SizeType32 const*>(*outputs->parentIdsPtr);
|
|
auto batchSlotsPtr = bufferCast<SizeType32>(*batchSlots);
|
|
auto sequenceLengthPtr = bufferCast<SizeType32>(*outputs->sequenceLength.value());
|
|
auto noRepeatNgramSizeDevicePtr = bufferCastOrNull<SizeType32>(noRepeatNgramSizeDevice);
|
|
|
|
// Call to invokeBanRepeatNgram with dereferenced inputs
|
|
invokeBanRepeatNgram(logitsPtr, outputIdsPtr, finishedPtr, parentIdsPtr, batchSlotsPtr, sequenceLengthPtr,
|
|
decoderDomain.getBatchSize(), decoderDomain.getBeamWidth(), maxSeqLen, noRepeatNgramSizeDevicePtr,
|
|
decoderDomain.getVocabSizePadded(), maxStep, getStream());
|
|
}
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void BanWordsLayer<T>::banBadWords(TensorPtr const& logits, std::shared_ptr<BaseDecodingOutputs> const& outputs,
|
|
std::shared_ptr<DecodingInputs> const& inputs, BufferConstPtr const& batchSlots, DecoderDomain const& decoderDomain,
|
|
SizeType32 maxSeqLen)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
auto const maxBadWordsLength = inputs->banWordsInputs->maxBadWordsLen;
|
|
if (maxBadWordsLength != 0)
|
|
{
|
|
// Temporary variables to store dereferenced inputs
|
|
auto badWordsPtr = bufferCast<TokenIdType const*>(*inputs->banWordsInputs->badWordsPtr.value());
|
|
auto badWordsLens = bufferCast<SizeType32>(*inputs->banWordsInputs->badWordsLengths.value());
|
|
auto logitsPtr = bufferCast<T>(*logits);
|
|
auto outputIdsPtr = bufferCast<TokenIdType const*>(*outputs->outputIdsPtr);
|
|
auto parentIdsPtr
|
|
= decoderDomain.getBeamWidth() > 1 ? bufferCast<SizeType32 const*>(*outputs->parentIdsPtr) : nullptr;
|
|
auto sequenceLengthPtr = bufferCast<SizeType32>(*outputs->sequenceLength.value());
|
|
auto batchSlotsPtr = bufferCast<SizeType32>(*batchSlots);
|
|
|
|
// Call to invokeBanBadWords with dereferenced inputs
|
|
invokeBanBadWords(logitsPtr, outputIdsPtr, parentIdsPtr, batchSlotsPtr, decoderDomain.getBatchSize(),
|
|
decoderDomain.getBeamWidth(), badWordsPtr, badWordsLens, maxBadWordsLength,
|
|
decoderDomain.getVocabSizePadded(), sequenceLengthPtr, maxSeqLen, getStream());
|
|
}
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void BanWordsLayer<T>::forwardAsync(std::shared_ptr<BaseDecodingOutputs> const& baseOutputs,
|
|
std::shared_ptr<BaseDecodingInputs> const& baseInputs,
|
|
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
NVTX3_SCOPED_RANGE(BanWordsLayer_forwardAsync);
|
|
|
|
auto inputs = std::dynamic_pointer_cast<DecodingInputs>(baseInputs);
|
|
auto outputs = std::dynamic_pointer_cast<BaseDecodingOutputs>(baseOutputs);
|
|
|
|
TLLM_CHECK_WITH_INFO(inputs->banWordsInputs, "banWordsInputs for forward is not set");
|
|
|
|
auto const localDecoderDomain = getLocalDecoderDomain(inputs, mDecoderDomain);
|
|
auto const maxSeqLen = outputs->outputIds->getDimension<-1>();
|
|
|
|
banRepeatNGrams(workspace->getDeviceRuntimeLogits(), outputs, inputs, workspace->getDeviceBatchSlots(),
|
|
mNoRepeatNgramSizeDevice, localDecoderDomain, maxSeqLen, mUseNoRepeatNgramSize);
|
|
banBadWords(workspace->getDeviceRuntimeLogits(), outputs, inputs, workspace->getDeviceBatchSlots(),
|
|
localDecoderDomain, maxSeqLen);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template class BanWordsLayer<float>;
|
|
template class BanWordsLayer<half>;
|
|
|
|
} // namespace tensorrt_llm::layers
|