TensorRT-LLMs/cpp/tensorrt_llm/layers/layerUtils.h
wili 3e035f2219
v1.2 (#3082)
Signed-off-by: wili <wili@nvidia.com>
2025-03-26 23:31:29 +08:00

184 lines
6.8 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <algorithm>
#include <cstddef>
#include <optional>
#include <utility>
#include <vector>
#include <cuda_runtime.h>
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/kernels/beamSearchKernels.h"
#include "tensorrt_llm/layers/decodingParams.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/iBuffer.h"
namespace tensorrt_llm::layers
{
// Using a local lambda in beam search layers to fill buffers causes an internal compiler error on nvcc windows.
// As a workaround and to promote DRY, the fill logic is refactored into FillBuffers below.
struct FillBuffers
{
using BufferPtr = runtime::IBuffer::SharedPtr;
using TensorConstPtr = runtime::ITensor::UniqueConstPtr;
using BufferConstPtr = runtime::IBuffer::SharedConstPtr;
template <typename T>
void operator()(std::optional<std::vector<T>> const& optParam, T const defaultValue, BufferPtr const& hostBuffer,
BufferPtr const& deviceBuffer, BufferConstPtr const& batchSlots, std::pair<float, float> const& limits,
std::string const& name) const
{
// Specialize for `beamWidthArray` and `beamSearchSteps`
bool constexpr isVector = std::is_same_v<T, std::vector<runtime::SizeType32>>;
for (runtime::SizeType32 bi = 0; bi < batchSize; ++bi)
{
T value = defaultValue;
runtime::SizeType32 const batchSlot = runtime::bufferCast<runtime::SizeType32 const>(*batchSlots)[bi];
if (optParam)
{
if (optParam->size() == 1)
{
value = optParam->front();
}
else
{
TLLM_CHECK_WITH_INFO(
optParam->size() == static_cast<size_t>(batchSize), "Argument vector size mismatch.");
value = optParam->at(bi);
}
}
if constexpr (isVector) // Fill vector (beam width array)
{
size_t constexpr maxLength = tensorrt_llm::kernels::kMaxBeamWidthArrayLength;
auto hostBufferRange = runtime::BufferRange<typename T::value_type>(*hostBuffer);
for (int i = 0; i < value.size(); ++i)
{
TLLM_CHECK_WITH_INFO(
limits.first < static_cast<float>(value[i]) && static_cast<float>(value[i]) <= limits.second,
"%s param (%f) is out of limits (%f, %f]", name.c_str(), static_cast<float>(value[i]),
limits.first, limits.second);
hostBufferRange[batchSlot * maxLength + i] = value[i];
}
for (int i = 0; i < maxLength - value.size(); ++i)
{
hostBufferRange[batchSlot * maxLength + value.size() + i] = value[value.size() - 1];
}
}
else // Fill scalar
{
TLLM_CHECK_WITH_INFO(
limits.first < static_cast<float>(value) && static_cast<float>(value) <= limits.second,
"%s param (%f) is out of limits (%f, %f]", name.c_str(), static_cast<float>(value), limits.first,
limits.second);
auto hostBufferRange = runtime::BufferRange<T>(*hostBuffer);
hostBufferRange[batchSlot] = value;
}
}
auto const hostSlice = runtime::IBuffer::slice(hostBuffer, 0, maxBatchSize);
auto deviceSlice = runtime::IBuffer::slice(deviceBuffer, 0, maxBatchSize);
mBufferManager->copy(*hostSlice, *deviceSlice);
}
runtime::SizeType32 batchSize;
runtime::SizeType32 maxBatchSize;
std::shared_ptr<runtime::BufferManager> mBufferManager;
};
template <typename T>
bool allOfBatchSlots(runtime::SizeType32 const* batchSlotsHost, T const* data, runtime::SizeType32 batchSize, T value)
{
return std::all_of(
batchSlotsHost, batchSlotsHost + batchSize, [&](runtime::SizeType32 b) { return data[b] == value; });
}
template <typename T>
T maxOfBatchSlots(runtime::SizeType32 const* batchSlotsHost, T const* data, runtime::SizeType32 batchSize)
{
return std::transform_reduce(
batchSlotsHost, batchSlotsHost + batchSize, std::numeric_limits<T>::lowest(),
[](auto a, auto b) { return std::max(a, b); }, [&](auto i) { return data[i]; });
}
inline DecoderDomain getLocalDecoderDomain(
std::shared_ptr<BaseDecodingInputs> baseInputs, DecoderDomain const& globalDecoderDomain)
{
auto inputs = std::dynamic_pointer_cast<DecodingInputs>(baseInputs);
runtime::SizeType32 batchSize{baseInputs->localBatchSize};
runtime::SizeType32 beamWidth{0};
runtime::SizeType32 vocabSize{0};
if (inputs->logits)
{
auto const& logitsShape = inputs->logits.value()->getShape();
TLLM_CHECK(logitsShape.nbDims == 3 || logitsShape.nbDims == 4);
beamWidth = inputs->logits.value()->getDimension<-2>();
vocabSize = inputs->logits.value()->getDimension<-1>();
}
else if (inputs->logitsVec)
{
TLLM_CHECK(inputs->logitsVec->size());
auto const& logitsShape = inputs->logitsVec.value()[0]->getShape();
TLLM_CHECK(logitsShape.nbDims == 3 || logitsShape.nbDims == 4);
beamWidth = inputs->logitsVec.value()[0]->getDimension<-2>();
vocabSize = inputs->logitsVec.value()[0]->getDimension<-1>();
}
else if (inputs->batchSlots)
{
beamWidth = globalDecoderDomain.getBeamWidth();
vocabSize = globalDecoderDomain.getVocabSize();
}
else
{
TLLM_THROW("Can't get local Decoder domain");
}
return {batchSize, beamWidth, vocabSize};
}
template <typename... T>
size_t expandMatchElements(size_t expandSize, std::vector<T>&... vector)
{
std::array vectorSizes{vector.size()...};
bool allSingle = true;
for (auto size : vectorSizes)
{
if (size == expandSize)
{
allSingle = false;
}
else if (size != 1)
{
return 0;
}
}
if (allSingle)
{
return 1;
}
(vector.resize(expandSize, vector.front()), ...);
return expandSize;
}
} // namespace tensorrt_llm::layers