TensorRT-LLMs/cpp/tensorrt_llm/layers/layersFactory.h
2024-11-12 15:27:49 +08:00

96 lines
3.2 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/layers/banWordsLayer.h"
#include "tensorrt_llm/layers/baseLayer.h"
#include "tensorrt_llm/layers/decodingLayer.h"
#include "tensorrt_llm/layers/penaltyLayer.h"
#include "tensorrt_llm/layers/stopCriteriaLayer.h"
#include <memory>
#include <vector>
namespace tensorrt_llm::layers
{
enum DecodingLayers_t
{
PENALTY_LAYER,
BAN_WORDS_LAYER,
DECODING_LAYER,
STOP_CRITERIA_LAYER
};
static std::vector<DecodingLayers_t> createDecodingLayerTypes(executor::DecodingMode const& mode)
{
std::vector<DecodingLayers_t> types = {};
if (mode.isUsePenalty())
{
types.push_back(DecodingLayers_t::PENALTY_LAYER);
}
if (mode.isUseBanWords())
{
types.push_back(DecodingLayers_t::BAN_WORDS_LAYER);
}
types.push_back(DecodingLayers_t::DECODING_LAYER);
if (mode.isUseStopCriteria())
{
types.push_back(DecodingLayers_t::STOP_CRITERIA_LAYER);
}
return types;
}
template <typename T>
static std::vector<std::unique_ptr<BaseLayer>> createLayers(executor::DecodingMode const& mode,
DecoderDomain const& decodingDomain, std::shared_ptr<runtime::BufferManager> const& bufferManager)
{
std::vector<std::unique_ptr<BaseLayer>> layers;
auto layerTypes = createDecodingLayerTypes(mode);
// Only when draft tokens and predicted and decoded by the engine, we can skip penalty layer.
if (!mode.isExplicitDraftTokens() && !mode.isEagle())
{
TLLM_CHECK_WITH_INFO(layerTypes.size() && layerTypes[0] == DecodingLayers_t::PENALTY_LAYER,
"Penalty layer is required to be the first layer for any decoder configuration");
}
for (auto&& type : layerTypes)
{
std::unique_ptr<BaseLayer> layer;
switch (type)
{
case DecodingLayers_t::PENALTY_LAYER:
layer = std::make_unique<PenaltyLayer<T>>(mode, decodingDomain, bufferManager);
break;
case DecodingLayers_t::BAN_WORDS_LAYER:
layer = std::make_unique<BanWordsLayer<T>>(mode, decodingDomain, bufferManager);
break;
case DecodingLayers_t::DECODING_LAYER:
layer = std::make_unique<DecodingLayer<T>>(mode, decodingDomain, bufferManager);
break;
case DecodingLayers_t::STOP_CRITERIA_LAYER:
layer = std::make_unique<StopCriteriaLayer<T>>(mode, decodingDomain, bufferManager);
break;
default: TLLM_CHECK_WITH_INFO(false, "Unknown DecodingLayers_t"); break;
}
layers.push_back(std::move(layer));
}
return layers;
}
} // namespace tensorrt_llm::layers