mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
96 lines
3.2 KiB
C++
96 lines
3.2 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/layers/banWordsLayer.h"
|
|
#include "tensorrt_llm/layers/baseLayer.h"
|
|
#include "tensorrt_llm/layers/decodingLayer.h"
|
|
#include "tensorrt_llm/layers/penaltyLayer.h"
|
|
#include "tensorrt_llm/layers/stopCriteriaLayer.h"
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace tensorrt_llm::layers
|
|
{
|
|
enum DecodingLayers_t
|
|
{
|
|
PENALTY_LAYER,
|
|
BAN_WORDS_LAYER,
|
|
DECODING_LAYER,
|
|
STOP_CRITERIA_LAYER
|
|
};
|
|
|
|
static std::vector<DecodingLayers_t> createDecodingLayerTypes(executor::DecodingMode const& mode)
|
|
{
|
|
std::vector<DecodingLayers_t> types = {};
|
|
if (mode.isUsePenalty())
|
|
{
|
|
types.push_back(DecodingLayers_t::PENALTY_LAYER);
|
|
}
|
|
if (mode.isUseBanWords())
|
|
{
|
|
types.push_back(DecodingLayers_t::BAN_WORDS_LAYER);
|
|
}
|
|
types.push_back(DecodingLayers_t::DECODING_LAYER);
|
|
if (mode.isUseStopCriteria())
|
|
{
|
|
types.push_back(DecodingLayers_t::STOP_CRITERIA_LAYER);
|
|
}
|
|
return types;
|
|
}
|
|
|
|
template <typename T>
|
|
static std::vector<std::unique_ptr<BaseLayer>> createLayers(executor::DecodingMode const& mode,
|
|
DecoderDomain const& decodingDomain, std::shared_ptr<runtime::BufferManager> const& bufferManager)
|
|
{
|
|
std::vector<std::unique_ptr<BaseLayer>> layers;
|
|
auto layerTypes = createDecodingLayerTypes(mode);
|
|
// Only when draft tokens and predicted and decoded by the engine, we can skip penalty layer.
|
|
if (!mode.isExplicitDraftTokens() && !mode.isEagle())
|
|
{
|
|
TLLM_CHECK_WITH_INFO(layerTypes.size() && layerTypes[0] == DecodingLayers_t::PENALTY_LAYER,
|
|
"Penalty layer is required to be the first layer for any decoder configuration");
|
|
}
|
|
for (auto&& type : layerTypes)
|
|
{
|
|
std::unique_ptr<BaseLayer> layer;
|
|
switch (type)
|
|
{
|
|
case DecodingLayers_t::PENALTY_LAYER:
|
|
layer = std::make_unique<PenaltyLayer<T>>(mode, decodingDomain, bufferManager);
|
|
break;
|
|
|
|
case DecodingLayers_t::BAN_WORDS_LAYER:
|
|
layer = std::make_unique<BanWordsLayer<T>>(mode, decodingDomain, bufferManager);
|
|
break;
|
|
|
|
case DecodingLayers_t::DECODING_LAYER:
|
|
layer = std::make_unique<DecodingLayer<T>>(mode, decodingDomain, bufferManager);
|
|
break;
|
|
|
|
case DecodingLayers_t::STOP_CRITERIA_LAYER:
|
|
layer = std::make_unique<StopCriteriaLayer<T>>(mode, decodingDomain, bufferManager);
|
|
break;
|
|
|
|
default: TLLM_CHECK_WITH_INFO(false, "Unknown DecodingLayers_t"); break;
|
|
}
|
|
layers.push_back(std::move(layer));
|
|
}
|
|
return layers;
|
|
}
|
|
} // namespace tensorrt_llm::layers
|