mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* feat/vbws-part4-v1.8: rebase Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * feat/vbws-part4-v1.9: fix incorrect output when using short output length Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * v1.9.1: remove useless variables Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * v1.9.2:fix incorrect output when using short output length Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * v1.9.3: rebase Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * v1.9.4: rebase Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * v1.9.5: remove API change Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> --------- Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> Co-authored-by: wili-65535 <wili-65535@users.noreply.github.com>
180 lines
8.9 KiB
C++
180 lines
8.9 KiB
C++
/*
|
|
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "stopCriteriaLayer.h"
|
|
#include "tensorrt_llm/common/nvtxUtils.h"
|
|
#include "tensorrt_llm/kernels/stopCriteriaKernels.h"
|
|
#include "tensorrt_llm/layers/layerUtils.h"
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm::layers
|
|
{
|
|
|
|
template <typename T>
|
|
size_t StopCriteriaLayer<T>::getWorkspaceSize() const noexcept
|
|
{
|
|
return mWorkspaceSize;
|
|
}
|
|
|
|
template <typename T>
|
|
StopCriteriaLayer<T>::StopCriteriaLayer(executor::DecodingMode const& mode, DecoderDomain const& decoderDomain,
|
|
std::shared_ptr<BufferManager> bufferManager)
|
|
: BaseLayer(decoderDomain, bufferManager)
|
|
, mDecodingMode(mode)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
auto const stopWordsWorkspaceSize = DecodingLayerWorkspace::calculateRequiredWorkspaceSize(
|
|
std::make_pair(ITensor::makeShape({decoderDomain.getBatchSize()}), TRTDataType<SizeType32>::value),
|
|
std::make_pair(ITensor::makeShape({decoderDomain.getBatchSize()}), TRTDataType<TokenIdType*>::value),
|
|
std::make_pair(ITensor::makeShape({decoderDomain.getBatchSize(), decoderDomain.getBeamWidth()}),
|
|
TRTDataType<FinishedState::UnderlyingType>::value));
|
|
auto const lengthCriterionWorkspaceSize = DecodingLayerWorkspace::calculateRequiredWorkspaceSize(
|
|
std::make_pair(ITensor::makeShape({1}), TRTDataType<SizeType32>::value),
|
|
std::make_pair(ITensor::makeShape({decoderDomain.getBatchSize(), decoderDomain.getBeamWidth()}),
|
|
TRTDataType<FinishedState::UnderlyingType>::value));
|
|
mWorkspaceSize = std::max(stopWordsWorkspaceSize, lengthCriterionWorkspaceSize);
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void StopCriteriaLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, TensorConstPtr batchSlots,
|
|
std::shared_ptr<BaseSetupParams> const& setupParams,
|
|
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void StopCriteriaLayer<T>::forwardAsync(std::shared_ptr<BaseDecodingOutputs> const& baseOutputs,
|
|
std::shared_ptr<BaseDecodingInputs> const& baseInputs,
|
|
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
NVTX3_SCOPED_RANGE(StopCriteriaLayer_forwardAsync);
|
|
|
|
auto inputs = std::dynamic_pointer_cast<DecodingInputs>(baseInputs);
|
|
auto outputs = std::dynamic_pointer_cast<BaseDecodingOutputs>(baseOutputs);
|
|
|
|
auto localDecoderDomain = getLocalDecoderDomain(inputs, mDecoderDomain);
|
|
// Beam width might have been changed in Variable-Beam-Width-Search mode
|
|
localDecoderDomain.setBeamWidth(baseOutputs->beamWidth);
|
|
|
|
auto const maxSeqLen = outputs->outputIds->getDimension<-1>();
|
|
|
|
TLLM_CHECK_WITH_INFO(inputs->stopCriteriaInputs, "stopCriteriaInputs for forward is not set");
|
|
|
|
if (mDecodingMode.isUseStopWords() && inputs->stopCriteriaInputs->maxStopWordsLen != 0)
|
|
{
|
|
checkStopWordsStopCriteria(outputs, inputs, localDecoderDomain, maxSeqLen, *mBufferManager, workspace);
|
|
}
|
|
if (mDecodingMode.isUseExplicitEosStop())
|
|
{
|
|
checkEosToken(outputs, inputs, localDecoderDomain, *mBufferManager, workspace);
|
|
}
|
|
if (mDecodingMode.isUseMaxLengthStop() && inputs->stopCriteriaInputs->sequenceLimitLength)
|
|
{
|
|
checkMaxLengthStopCriteria(outputs, inputs, localDecoderDomain, *mBufferManager, workspace);
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void StopCriteriaLayer<T>::checkStopWordsStopCriteria(std::shared_ptr<BaseDecodingOutputs>& outputs,
|
|
std::shared_ptr<DecodingInputs> const& inputs, DecoderDomain const& decoderDomain, SizeType32 maxSeqLen,
|
|
BufferManager const& bufferManager, std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
auto const maxStopWordsLength = inputs->stopCriteriaInputs->maxStopWordsLen;
|
|
auto* numNewTokens = bufferCastOrNull<SizeType32>(outputs->numNewTokens);
|
|
auto* outputIdsPtr = bufferCast<SizeType32 const*>(*outputs->outputIdsPtr);
|
|
auto* parentIdsPtr = bufferCast<SizeType32 const*>(*outputs->parentIdsPtr);
|
|
auto* sequenceLengthPtr = bufferCastOrNull<SizeType32>(outputs->sequenceLength);
|
|
auto [stopWordsLengthsDevice, stopWordsPtrDevice, finishedDevice]
|
|
= workspace->mirrorInWorkspace(inputs->stopCriteriaInputs->stopWordsLengths.value_or(nullptr),
|
|
inputs->stopCriteriaInputs->stopWordsPtr.value_or(nullptr), outputs->finished.value_or(nullptr));
|
|
auto const* stopWordsLengthsPtr
|
|
= stopWordsLengthsDevice == nullptr ? nullptr : bufferCast<SizeType32>(*stopWordsLengthsDevice);
|
|
auto const* stopWordsPtrPtr
|
|
= stopWordsPtrDevice == nullptr ? nullptr : bufferCast<TokenIdType const*>(*stopWordsPtrDevice);
|
|
auto* finishedPtr = finishedDevice == nullptr
|
|
? nullptr
|
|
: reinterpret_cast<FinishedState*>(bufferCast<FinishedState::UnderlyingType>(*finishedDevice));
|
|
invokeStopWordsCriterion(outputIdsPtr, parentIdsPtr, stopWordsPtrPtr, finishedPtr, sequenceLengthPtr,
|
|
workspace->getDeviceBatchSlotsPtr(), stopWordsLengthsPtr, numNewTokens, maxStopWordsLength,
|
|
decoderDomain.getBatchSize(), decoderDomain.getBeamWidth(), maxSeqLen, bufferManager.getStream().get());
|
|
if (finishedPtr != nullptr)
|
|
{
|
|
bufferManager.copy(*finishedDevice, *outputs->finished.value());
|
|
}
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void StopCriteriaLayer<T>::checkMaxLengthStopCriteria(std::shared_ptr<BaseDecodingOutputs>& outputs,
|
|
std::shared_ptr<DecodingInputs> const& inputs, DecoderDomain const& decoderDomain,
|
|
BufferManager const& bufferManager, std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
auto* numNewTokens = bufferCastOrNull<SizeType32>(outputs->numNewTokens);
|
|
auto [finishedSumDevice, finishedDevice]
|
|
= workspace->mirrorInWorkspace(outputs->finishedSum.value_or(nullptr), outputs->finished.value_or(nullptr));
|
|
auto* finishedSumDevicePtr = finishedSumDevice == nullptr ? nullptr : bufferCast<SizeType32>(*finishedSumDevice);
|
|
auto* finishedPtr = finishedDevice == nullptr
|
|
? nullptr
|
|
: reinterpret_cast<FinishedState*>(bufferCast<FinishedState::UnderlyingType>(*finishedDevice));
|
|
invokeLengthCriterion(finishedPtr, finishedSumDevicePtr,
|
|
bufferCastOrNull<SizeType32>(inputs->stopCriteriaInputs->sequenceLimitLength),
|
|
bufferCastOrNull<SizeType32>(outputs->sequenceLength), numNewTokens, workspace->getDeviceBatchSlotsPtr(),
|
|
decoderDomain.getBatchSize(), decoderDomain.getBeamWidth(), bufferManager.getStream().get());
|
|
if (finishedSumDevice != nullptr)
|
|
{
|
|
bufferManager.copy(*finishedSumDevice, *outputs->finishedSum.value());
|
|
}
|
|
if (finishedPtr != nullptr)
|
|
{
|
|
bufferManager.copy(*finishedDevice, *outputs->finished.value());
|
|
}
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void StopCriteriaLayer<T>::checkEosToken(std::shared_ptr<BaseDecodingOutputs>& outputs,
|
|
std::shared_ptr<DecodingInputs> const& inputs, DecoderDomain const& decoderDomain,
|
|
BufferManager const& bufferManager, std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
auto* numNewTokens = bufferCastOrNull<SizeType32>(outputs->numNewTokens);
|
|
auto* sequenceLengthsPtr = bufferCastOrNull<SizeType32>(outputs->sequenceLength);
|
|
auto const* endIdsPtr = bufferCastOrNull<TokenIdType>(inputs->endIds);
|
|
auto* finishedStatePtr
|
|
= reinterpret_cast<FinishedState*>(bufferCastOrNull<FinishedState::UnderlyingType>(outputs->finished));
|
|
invokeExplicitEOSCriterion(bufferCastOrNull<TokenIdType const*>(outputs->outputIdsPtr), endIdsPtr, finishedStatePtr,
|
|
sequenceLengthsPtr, numNewTokens, workspace->getDeviceBatchSlotsPtr(), decoderDomain.getBatchSize(),
|
|
decoderDomain.getBeamWidth(), decoderDomain.getMaxDecodingTokens(), bufferManager.getStream().get());
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template class StopCriteriaLayer<float>;
|
|
template class StopCriteriaLayer<half>;
|
|
|
|
} // namespace tensorrt_llm::layers
|