mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
201 lines
8.5 KiB
C++
201 lines
8.5 KiB
C++
/*
|
|
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "topKSamplingLayer.h"
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/common/nvtxUtils.h"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
|
|
#include "tensorrt_llm/layers/defaultDecodingParams.h"
|
|
#include "tensorrt_llm/layers/layerUtils.h"
|
|
|
|
#include <algorithm>
|
|
#include <cfloat>
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm::layers
|
|
{
|
|
|
|
template <typename T>
|
|
TopKSamplingLayer<T>::TopKSamplingLayer(
|
|
DecoderDomain const& decoderDomain, std::shared_ptr<BufferManager> bufferManager)
|
|
: BaseLayer(decoderDomain, bufferManager)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
allocateBuffer(mDecoderDomain.getBatchSize());
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void TopKSamplingLayer<T>::allocateBuffer(SizeType32 const batchSize)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
mWorkspaceSize = getTopKWorkspaceSize<T>(batchSize, 1, TOP_K_MAX, mDecoderDomain.getVocabSizePadded());
|
|
auto const batchSizeShape = ITensor::makeShape({batchSize});
|
|
mRuntimeTopKDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<SizeType32>::value);
|
|
mRuntimeTopPDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<float>::value);
|
|
mSkipDecodeDevice = mBufferManager->gpu(batchSizeShape, TRTDataType<bool>::value);
|
|
mRuntimeTopKHost = mBufferManager->cpu(batchSizeShape, TRTDataType<SizeType32>::value);
|
|
mSkipDecodeHost = mBufferManager->cpu(batchSizeShape, TRTDataType<bool>::value);
|
|
mSetupWorkspaceSize = batchSize * sizeof(SizeType32);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void TopKSamplingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, TensorConstPtr batchSlots,
|
|
std::shared_ptr<BaseSetupParams> const& baseSetupParams,
|
|
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
NVTX3_SCOPED_RANGE(TopKSamplingLayer_setup);
|
|
|
|
auto setupParams = std::dynamic_pointer_cast<SamplingSetupParams>(baseSetupParams);
|
|
mNormalizeLogProbs = setupParams->normalizeLogProbs.value_or(false);
|
|
|
|
auto runtimeTopK = setupParams->runtimeTopK.value_or(std::vector{DefaultDecodingParams::getTopK()});
|
|
auto runtimeTopP = setupParams->runtimeTopP.value_or(std::vector{DefaultDecodingParams::getTopP()});
|
|
|
|
auto const paramsSize = expandMatchElements(batchSize, runtimeTopK, runtimeTopP);
|
|
|
|
TLLM_CHECK_WITH_INFO(paramsSize != 0,
|
|
fmtstr("TopKSamplingLayer got parameter with unexpected size, want 1 or batchSize(%d), got"
|
|
"runtimeTopK.size() = %zu, runtimeTopP.size() = %zu",
|
|
batchSize, runtimeTopK.size(), runtimeTopP.size()));
|
|
|
|
for (size_t i = 0; i < paramsSize; ++i)
|
|
{
|
|
auto& topK = runtimeTopK[i];
|
|
auto& topP = runtimeTopP[i];
|
|
clampTopK(topK);
|
|
clampTopP(topP);
|
|
regularizeTopKTopP(topK, topP);
|
|
}
|
|
|
|
// Update parameters on both device and host, so we can
|
|
// - determine whether we can skip launch kernel by examine mSkipDecodeHost
|
|
// - select best kernel by examine mRuntimeTopKHost
|
|
// without consulting device memory, or we'll have to do an expensive synchronization.
|
|
SizeType32* topKsPtr = nullptr;
|
|
float* topPsPtr = nullptr;
|
|
|
|
if (paramsSize > 1)
|
|
{
|
|
auto initWorkspaceSizes = getTopKInitWorkspaceSizes(batchSize);
|
|
auto workspacePtr = workspace->getRawWorkspaceDevicePtr();
|
|
calcAlignedPointers(workspacePtr, initWorkspaceSizes)(topKsPtr, topPsPtr);
|
|
DecodingLayerWorkspace::copyToWorkspace(
|
|
*mBufferManager, runtimeTopK, IBuffer::wrap(topKsPtr, initWorkspaceSizes[0] / sizeof(*topKsPtr)));
|
|
DecodingLayerWorkspace::copyToWorkspace(
|
|
*mBufferManager, runtimeTopP, IBuffer::wrap(topPsPtr, initWorkspaceSizes[1] / sizeof(*topPsPtr)));
|
|
}
|
|
auto const* batchSlotsDevicePtr = workspace->getDeviceBatchSlotsPtr();
|
|
auto* skipDecodeDevicePtr = bufferCastOrNull<bool>(mSkipDecodeDevice);
|
|
invokeSetupTopKRuntimeArgs(batchSize, //
|
|
{topKsPtr, runtimeTopK.front(), bufferCast<SizeType32>(*mRuntimeTopKDevice)}, //
|
|
{topPsPtr, runtimeTopP.front(), bufferCast<float>(*mRuntimeTopPDevice)}, //
|
|
skipDecodeDevicePtr, batchSlotsDevicePtr, true, getStream());
|
|
|
|
auto const* batchSlotsHostPtr = bufferCast<SizeType32>(*batchSlots);
|
|
auto* skipDecodeHostPtr = bufferCastOrNull<bool>(mSkipDecodeHost);
|
|
topKsPtr = paramsSize > 1 ? runtimeTopK.data() : nullptr;
|
|
invokeSetupTopKRuntimeArgs(batchSize, //
|
|
{topKsPtr, runtimeTopK.front(), bufferCast<SizeType32>(*mRuntimeTopKHost)}, {}, //
|
|
skipDecodeHostPtr, batchSlotsHostPtr, false);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void TopKSamplingLayer<T>::forwardAsync(std::shared_ptr<BaseDecodingOutputs> const& outputs,
|
|
std::shared_ptr<BaseDecodingInputs> const& baseInputs,
|
|
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
NVTX3_SCOPED_RANGE(TopKSamplingLayer_forwardAsync);
|
|
|
|
auto inputs = std::dynamic_pointer_cast<SamplingInputs>(baseInputs);
|
|
|
|
auto const batchSize = inputs->logits.value()->getDimension<0>();
|
|
|
|
auto const* batchSlotsHost = bufferCast<SizeType32>(*inputs->batchSlots);
|
|
auto* skipDecodeHostPtr = bufferCastOrNull<bool>(mSkipDecodeHost);
|
|
auto const skip = allOfBatchSlots(batchSlotsHost, skipDecodeHostPtr, batchSize, true);
|
|
if (skip)
|
|
{
|
|
return;
|
|
}
|
|
|
|
auto logits = bufferCastOrNull<T>(inputs->logits);
|
|
auto const* endIds = bufferCastOrNull<TokenIdType>(inputs->endIds);
|
|
auto const probsComputed = inputs->probsComputed;
|
|
|
|
FinishedState const* finishedInput = (inputs->finished)
|
|
? reinterpret_cast<FinishedState const*>(bufferCastOrNull<FinishedState::UnderlyingType>(inputs->finished))
|
|
: nullptr;
|
|
FinishedState* finishedOutput = (outputs->finished)
|
|
? reinterpret_cast<FinishedState*>(bufferCastOrNull<FinishedState::UnderlyingType>(outputs->finished))
|
|
: nullptr;
|
|
|
|
auto* runtimeTopKHostPtr = bufferCast<SizeType32>(*mRuntimeTopKHost);
|
|
|
|
TopKSamplingKernelParams<T> params;
|
|
params.logProbs = logits;
|
|
params.outputIdsPtrs = bufferCastOrNull<TokenIdType*>(outputs->outputIdsPtr);
|
|
params.workspace = workspace->getRawWorkspaceDevicePtr();
|
|
params.maxTopP = 1.0f;
|
|
params.topPs = bufferCastOrNull<float>(mRuntimeTopPDevice);
|
|
params.maxTopK = maxOfBatchSlots(batchSlotsHost, runtimeTopKHostPtr, batchSize);
|
|
params.topKs = bufferCastOrNull<SizeType32>(mRuntimeTopKDevice);
|
|
params.sequenceLengths = bufferCastOrNull<SizeType32>(outputs->sequenceLength);
|
|
params.endIds = endIds;
|
|
params.batchSlots = workspace->getDeviceBatchSlotsPtr();
|
|
params.finishedInput = finishedInput;
|
|
params.finishedOutput = finishedOutput;
|
|
params.skipDecode = bufferCastOrNull<bool>(mSkipDecodeDevice);
|
|
params.cumLogProbs = bufferCastOrNull<float>(outputs->cumLogProbs);
|
|
params.outputLogProbs = bufferCastOrNull<float>(outputs->outputLogProbsTiled);
|
|
params.curandState = inputs->curandStates;
|
|
params.batchSize = batchSize;
|
|
params.maxBatchSize = mDecoderDomain.getBatchSize();
|
|
params.maxTokensPerStep = 1;
|
|
params.vocabSizePadded = mDecoderDomain.getVocabSizePadded();
|
|
params.normalizeLogProbs = mNormalizeLogProbs;
|
|
params.logitsHasProbs = probsComputed;
|
|
|
|
invokeBatchTopKSampling(params, getStream());
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
size_t TopKSamplingLayer<T>::getWorkspaceSize() const noexcept
|
|
{
|
|
return std::max(mWorkspaceSize, mSetupWorkspaceSize);
|
|
}
|
|
|
|
template class TopKSamplingLayer<float>;
|
|
template class TopKSamplingLayer<half>;
|
|
|
|
} // namespace tensorrt_llm::layers
|