TensorRT-LLMs/cpp/tensorrt_llm/layers/topKSamplingLayer.h
2024-11-05 16:27:06 +08:00

64 lines
2.2 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/layers/baseLayer.h"
#include "tensorrt_llm/runtime/common.h"
namespace tensorrt_llm::layers
{
//! \brief Layer to randomly sample tokens from TopK logits.
//! When both TopK and TopP are specified, layer jointly samples using TopK and TopP.
//! When no TopK param is specified, sampling is skipped for particular request.
template <typename T>
class TopKSamplingLayer : public BaseLayer
{
using Base = BaseLayer;
public:
TopKSamplingLayer(DecoderDomain const& decoderDomain, std::shared_ptr<runtime::BufferManager> bufferManager);
void setup(runtime::SizeType32 batchSize, runtime::SizeType32 beamWidth, TensorConstPtr batchSlots,
std::shared_ptr<BaseSetupParams> const& setupParams,
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace) override;
void forwardAsync(std::shared_ptr<BaseDecodingOutputs> const& outputs,
std::shared_ptr<BaseDecodingInputs> const& inputs,
std::shared_ptr<runtime::DecodingLayerWorkspace> const& workspace) override;
//! @returns workspace needed for this layer in bytes
[[nodiscard]] size_t getWorkspaceSize() const noexcept override;
protected:
bool mNormalizeLogProbs{true};
size_t mWorkspaceSize{0};
size_t mSetupWorkspaceSize{0};
TensorPtr mRuntimeTopKDevice;
TensorPtr mRuntimeTopPDevice;
TensorPtr mSkipDecodeDevice;
TensorPtr mRuntimeTopKHost;
TensorPtr mSkipDecodeHost;
using Base::mDecoderDomain;
private:
void allocateBuffer(runtime::SizeType32 batchSize);
};
} // namespace tensorrt_llm::layers