TensorRT-LLMs/cpp/tensorrt_llm/nanobind/bindings.cpp
Robin Kobus 9913dc25ae
[None][refactor] decoding inputs, part 2 (#5799)
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-11-18 14:38:51 +01:00

525 lines
31 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/nanobind/common/customCasters.h"
#include <nanobind/nanobind.h>
#include <nanobind/operators.h>
#include <nanobind/stl/bind_vector.h>
#include <nanobind/stl/chrono.h>
#include <nanobind/stl/filesystem.h>
#include <nanobind/stl/optional.h>
#include <nanobind/stl/shared_ptr.h>
#include <nanobind/stl/string.h>
#include <nanobind/stl/tuple.h>
#include <nanobind/stl/unique_ptr.h>
#include <torch/extension.h>
#include <vector>
#include "tensorrt_llm/batch_manager/peftCacheManagerConfig.h"
#include "tensorrt_llm/common/quantization.h"
#include "tensorrt_llm/nanobind/batch_manager/algorithms.h"
#include "tensorrt_llm/nanobind/batch_manager/bindings.h"
#include "tensorrt_llm/nanobind/batch_manager/buffers.h"
#include "tensorrt_llm/nanobind/batch_manager/cacheTransceiver.h"
#include "tensorrt_llm/nanobind/batch_manager/kvCacheConnector.h"
#include "tensorrt_llm/nanobind/batch_manager/kvCacheManager.h"
#include "tensorrt_llm/nanobind/batch_manager/llmRequest.h"
#include "tensorrt_llm/nanobind/common/tllmExceptions.h"
#include "tensorrt_llm/nanobind/executor/bindings.h"
#include "tensorrt_llm/nanobind/process_group/bindings.h"
#include "tensorrt_llm/nanobind/runtime/bindings.h"
#include "tensorrt_llm/nanobind/testing/modelSpecBinding.h"
#include "tensorrt_llm/nanobind/thop/bindings.h"
#include "tensorrt_llm/nanobind/userbuffers/bindings.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/gptJsonConfig.h"
#include "tensorrt_llm/runtime/ipcNvlsMemory.h"
#include "tensorrt_llm/runtime/memoryCounters.h"
#include "tensorrt_llm/runtime/samplingConfig.h"
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
namespace nb = nanobind;
namespace tb = tensorrt_llm::batch_manager;
namespace tpb = tensorrt_llm::nanobind::batch_manager;
namespace tc = tensorrt_llm::common;
namespace tr = tensorrt_llm::runtime;
namespace tle = tensorrt_llm::executor;
using SizeType32 = tr::SizeType32;
using TokenIdType = tr::TokenIdType;
template <typename T>
using OptVec = std::optional<std::vector<T>>;
#if not defined(TRTLLM_NB_MODULE)
#error "TRTLLM_NB_MODULE must be defined"
#endif
namespace
{
tr::SamplingConfig makeSamplingConfig(std::vector<tr::SamplingConfig> const& configs)
{
return tr::SamplingConfig(configs);
}
} // namespace
NB_MODULE(TRTLLM_NB_MODULE, m)
{
m.doc() = "TensorRT LLM Python bindings for C++ runtime";
m.attr("binding_type") = "nanobind";
nb::set_leak_warnings(false);
// Create MpiComm binding first since it's used in the executor bindings
nb::class_<tensorrt_llm::mpi::MpiComm>(m, "MpiComm")
.def_static("rank",
[]()
{
auto& session = tensorrt_llm::mpi::MpiComm::session();
return session.tensorrt_llm::mpi::MpiComm::getRank();
})
.def_static("size",
[]()
{
auto& session = tensorrt_llm::mpi::MpiComm::session();
return session.tensorrt_llm::mpi::MpiComm::getSize();
})
.def_static("local_size",
[]()
{
auto& session = tensorrt_llm::mpi::MpiComm::localSession();
return session.tensorrt_llm::mpi::MpiComm::getSize();
})
.def_static("local_init", []() { tensorrt_llm::mpi::MpiComm::localSession(); })
.def_static("set_raw_mpi_session_by_fortran_handle",
[](int64_t fortran_handle) { tensorrt_llm::mpi::MpiComm::setRawSessionByFortran(fortran_handle); })
.def_static("split",
[](size_t color, size_t rank)
{
auto& world = tensorrt_llm::mpi::MpiComm::world();
tensorrt_llm::mpi::MpiComm::setSession(world.split(color, rank));
});
nb::class_<tr::CudaStream>(m, "CudaStream")
.def(
"__init__",
[](tr::CudaStream* self, nb::object py_stream)
{
cudaStream_t stream = reinterpret_cast<cudaStream_t>(nb::cast<uintptr_t>(py_stream));
new (self) tr::CudaStream{stream};
},
nb::arg("stream_ptr"))
.def("get_device", &tr::CudaStream::getDevice);
// Create submodule for executor bindings.
auto mExecutor = m.def_submodule("executor", "Executor bindings");
auto mInternal = m.def_submodule("internal", "Internal submodule of TRTLLM runtime");
auto mInternalProcessGroup = mInternal.def_submodule("process_group", "PyTorch ProcessGroup internal bindings");
auto mInternalRuntime = mInternal.def_submodule("runtime", "Runtime internal bindings");
auto mInternalTesting = mInternal.def_submodule("testing", "Testing internal bindings");
auto mInternalBatchManager = mInternal.def_submodule("batch_manager", "Batch manager internal bindings");
auto mInternalThop = mInternal.def_submodule("thop", "Torch op internal bindings");
auto mExceptions = m.def_submodule("exceptions", "Exceptions internal bindings");
tensorrt_llm::nanobind::executor::initBindings(mExecutor);
tensorrt_llm::nanobind::runtime::initBindingsEarly(mInternalRuntime);
tensorrt_llm::nanobind::common::initExceptionsBindings(mExceptions);
tensorrt_llm::nanobind::thop::initBindings(mInternalThop);
auto buildInfo = m.def_submodule("BuildInfo");
buildInfo.attr("ENABLE_MULTI_DEVICE") = nb::int_(ENABLE_MULTI_DEVICE);
nb::class_<tb::PeftCacheManagerConfig>(m, "PeftCacheManagerConfig")
.def(nb::init<SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, SizeType32,
SizeType32, std::optional<float>, std::optional<size_t>, std::optional<std::string>>(),
nb::arg("num_host_module_layer") = 0, nb::arg("num_device_module_layer") = 0,
nb::arg("optimal_adapter_size") = 8, nb::arg("max_adapter_size") = 64, nb::arg("num_put_workers") = 1,
nb::arg("num_ensure_workers") = 1, nb::arg("num_copy_streams") = 1,
nb::arg("max_pages_per_block_host") = 24, nb::arg("max_pages_per_block_device") = 8,
nb::arg("device_cache_percent") = std::nullopt, nb::arg("host_cache_size") = std::nullopt,
nb::arg("lora_prefetch_dir") = std::nullopt)
.def_rw("num_host_module_layer", &tb::PeftCacheManagerConfig::numHostModuleLayer)
.def_rw("num_device_module_layer", &tb::PeftCacheManagerConfig::numDeviceModuleLayer)
.def_rw("optimal_adapter_size", &tb::PeftCacheManagerConfig::optimalAdapterSize)
.def_rw("max_adapter_size", &tb::PeftCacheManagerConfig::maxAdapterSize)
.def_rw("num_put_workers", &tb::PeftCacheManagerConfig::numPutWorkers)
.def_rw("num_ensure_workers", &tb::PeftCacheManagerConfig::numEnsureWorkers)
.def_rw("num_copy_streams", &tb::PeftCacheManagerConfig::numCopyStreams)
.def_rw("max_pages_per_block_host", &tb::PeftCacheManagerConfig::maxPagesPerBlockHost)
.def_rw("max_pages_per_block_device", &tb::PeftCacheManagerConfig::maxPagesPerBlockDevice)
.def_rw("device_cache_percent", &tb::PeftCacheManagerConfig::deviceCachePercent)
.def_rw("host_cache_size", &tb::PeftCacheManagerConfig::hostCacheSize)
.def_rw("lora_prefetch_dir", &tb::PeftCacheManagerConfig::loraPrefetchDir);
nb::enum_<nvinfer1::DataType>(m, "DataType")
.value("FLOAT", nvinfer1::DataType::kFLOAT)
.value("HALF", nvinfer1::DataType::kHALF)
.value("INT8", nvinfer1::DataType::kINT8)
.value("INT32", nvinfer1::DataType::kINT32)
.value("BOOL", nvinfer1::DataType::kBOOL)
.value("UINT8", nvinfer1::DataType::kUINT8)
.value("FP8", nvinfer1::DataType::kFP8)
.value("BF16", nvinfer1::DataType::kBF16)
.value("INT64", nvinfer1::DataType::kINT64)
.value("NVFP4", nvinfer1::DataType::kFP4)
.export_values();
nb::enum_<tr::ModelConfig::ModelVariant>(m, "GptModelVariant")
.value("GPT", tr::ModelConfig::ModelVariant::kGpt)
.value("GLM", tr::ModelConfig::ModelVariant::kGlm)
.value("CHATGLM", tr::ModelConfig::ModelVariant::kChatGlm)
.value("MAMBA", tr::ModelConfig::ModelVariant::kMamba)
.value("RECURRENTGEMMA", tr::ModelConfig::ModelVariant::kRecurrentGemma);
nb::enum_<tr::ModelConfig::KVCacheType>(m, "KVCacheType")
.value("CONTINUOUS", tr::ModelConfig::KVCacheType::kCONTINUOUS)
.value("PAGED", tr::ModelConfig::KVCacheType::kPAGED)
.value("DISABLED", tr::ModelConfig::KVCacheType::kDISABLED)
.def("from_string", tr::ModelConfig::KVCacheTypeFromString);
nb::enum_<tr::ModelConfig::LayerType>(m, "LayerType")
.value("ATTENTION", tr::ModelConfig::LayerType::kATTENTION)
.value("RECURRENT", tr::ModelConfig::LayerType::kRECURRENT);
nb::enum_<tr::LoraModule::ModuleType>(m, "LoraModuleType")
.value("INVALID", tr::LoraModule::ModuleType::kINVALID)
.value("ATTN_QKV", tr::LoraModule::ModuleType::kATTN_QKV)
.value("ATTN_Q", tr::LoraModule::ModuleType::kATTN_Q)
.value("ATTN_K", tr::LoraModule::ModuleType::kATTN_K)
.value("ATTN_V", tr::LoraModule::ModuleType::kATTN_V)
.value("ATTN_DENSE", tr::LoraModule::ModuleType::kATTN_DENSE)
.value("MLP_H_TO_4H", tr::LoraModule::ModuleType::kMLP_H_TO_4H)
.value("MLP_4H_TO_H", tr::LoraModule::ModuleType::kMLP_4H_TO_H)
.value("MLP_GATE", tr::LoraModule::ModuleType::kMLP_GATE)
.value("CROSS_ATTN_QKV", tr::LoraModule::ModuleType::kCROSS_ATTN_QKV)
.value("CROSS_ATTN_Q", tr::LoraModule::ModuleType::kCROSS_ATTN_Q)
.value("CROSS_ATTN_K", tr::LoraModule::ModuleType::kCROSS_ATTN_K)
.value("CROSS_ATTN_V", tr::LoraModule::ModuleType::kCROSS_ATTN_V)
.value("CROSS_ATTN_DENSE", tr::LoraModule::ModuleType::kCROSS_ATTN_DENSE)
.value("MOE_H_TO_4H", tr::LoraModule::ModuleType::kMOE_H_TO_4H)
.value("MOE_4H_TO_H", tr::LoraModule::ModuleType::kMOE_4H_TO_H)
.value("MOE_GATE", tr::LoraModule::ModuleType::kMOE_GATE)
.value("MOE_ROUTER", tr::LoraModule::ModuleType::kMOE_ROUTER)
.value("MLP_ROUTER", tr::LoraModule::ModuleType::kMLP_ROUTER)
.value("MLP_GATE_UP", tr::LoraModule::ModuleType::kMLP_GATE_UP);
nb::class_<tr::LoraModule>(m, "LoraModule")
.def(nb::init<tr::LoraModule::ModuleType, SizeType32, SizeType32, bool, bool, SizeType32, SizeType32>(),
nb::arg("module_type"), nb::arg("in_dim"), nb::arg("out_dim"), nb::arg("in_dim_first"),
nb::arg("out_dim_first"), nb::arg("in_tp_split_dim"), nb::arg("out_tp_split_dim"))
.def_prop_ro("module_type", &tr::LoraModule::name)
.def_prop_ro("in_dim", &tr::LoraModule::inDim)
.def_prop_ro("out_dim", &tr::LoraModule::outDim)
.def_prop_ro("in_dim_first", &tr::LoraModule::inDimFirst)
.def_prop_ro("out_dim_first", &tr::LoraModule::outDimFirst)
.def_prop_ro("in_tp_split_dim", &tr::LoraModule::inTpSplitDim)
.def_prop_ro("out_tp_split_dim", &tr::LoraModule::outTpSplitDim)
.def_static("create_lora_modules", &tr::LoraModule::createLoraModules, nb::arg("lora_module_names"),
nb::arg("hidden_size"), nb::arg("mlp_hidden_size"), nb::arg("num_attention_heads"),
nb::arg("num_kv_attention_heads"), nb::arg("attention_head_size"), nb::arg("tp_size") = 1,
nb::arg("num_experts") = 0);
nb::class_<tc::QuantMode>(m, "QuantMode")
.def_static("none", &tc::QuantMode::none)
.def_static("int4_weights", &tc::QuantMode::int4Weights)
.def_static("int8_weights", &tc::QuantMode::int8Weights)
.def_static("activations", &tc::QuantMode::activations)
.def_static("per_channel_scaling", &tc::QuantMode::perChannelScaling)
.def_static("per_token_scaling", &tc::QuantMode::perTokenScaling)
.def_static("per_group_scaling", &tc::QuantMode::perGroupScaling)
.def_static("int8_kv_cache", &tc::QuantMode::int8KvCache)
.def_static("fp8_kv_cache", &tc::QuantMode::fp8KvCache)
.def_static("fp8_qdq", &tc::QuantMode::fp8Qdq)
.def_prop_ro("value", &tc::QuantMode::value)
.def("is_set", &tc::QuantMode::isSet, nb::arg("mode"))
.def_prop_ro("has_int4_weights", &tc::QuantMode::hasInt4Weights)
.def_prop_ro("has_int8_weights", &tc::QuantMode::hasInt8Weights)
.def_prop_ro("has_activations", &tc::QuantMode::hasActivations)
.def_prop_ro("has_per_channel_scaling", &tc::QuantMode::hasPerChannelScaling)
.def_prop_ro("has_per_token_scaling", &tc::QuantMode::hasPerTokenScaling)
.def_prop_ro("has_per_group_scaling", &tc::QuantMode::hasPerGroupScaling)
.def_prop_ro("has_static_activation_scaling", &tc::QuantMode::hasStaticActivationScaling)
.def_prop_ro("has_int8_kv_cache", &tc::QuantMode::hasInt8KvCache)
.def_prop_ro("has_fp4_kv_cache", &tc::QuantMode::hasFp4KvCache)
.def_prop_ro("has_fp8_kv_cache", &tc::QuantMode::hasFp8KvCache)
.def_prop_ro("has_fp8_qdq", &tc::QuantMode::hasFp8Qdq)
.def_prop_ro("has_nvfp4", &tc::QuantMode::hasNvfp4)
.def_prop_ro("has_w4a8_mxfp4_fp8", &tc::QuantMode::hasW4a8Mxfp4Fp8)
.def_prop_ro("has_w4a8_mxfp4_mxfp8", &tc::QuantMode::hasW4a8Mxfp4Mxfp8)
.def_prop_ro("has_w4a16_mxfp4", &tc::QuantMode::hasW4a16Mxfp4)
.def_prop_ro("has_kv_cache_quant", &tc::QuantMode::hasKvCacheQuant)
.def_static("from_description", &tc::QuantMode::fromDescription, nb::arg("quantize_weights"),
nb::arg("quantize_activations"), nb::arg("per_token"), nb::arg("per_channel"), nb::arg("per_group"),
nb::arg("use_int4_weights"), nb::arg("use_int8_kv_cache"), nb::arg("use_fp8_kv_kache"),
nb::arg("use_fp8_qdq"), nb::arg("use_fp8_rowwise"), nb::arg("use_w4a8_qserve"), nb::arg("use_nvfp4"),
nb::arg("use_fp8_block_scales"), nb::arg("use_w4a8_mxfp4_fp8"), nb::arg("use_w4a8_mxfp4_mxfp8"),
nb::arg("use_w4a16_mxfp4"))
.def_static("use_smooth_quant", &tc::QuantMode::useSmoothQuant, nb::arg("per_token") = false,
nb::arg("per_channel") = false)
.def_static("use_weight_only", &tc::QuantMode::useWeightOnly, nb::arg("use_int4_weights") = false,
nb::arg("per_group") = false)
.def_static("from_quant_algo", &tc::QuantMode::fromQuantAlgo, nb::arg("quant_algo") = nb::none(),
nb::arg("kv_cache_quant_algo") = nb::none())
.def(nb::self + nb::self)
.def(nb::self += nb::self)
.def(nb::self - nb::self)
.def(nb::self -= nb::self)
.def(nb::self == nb::self)
.def(nb::self != nb::self);
nb::class_<tr::ModelConfig>(m, "ModelConfig")
.def(nb::init<SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, nvinfer1::DataType>(),
nb::arg("vocab_size"), nb::arg("num_layers"), nb::arg("num_attention_layers"), nb::arg("num_rnn_layers"),
nb::arg("num_heads"), nb::arg("hidden_size"), nb::arg("data_type"))
.def_prop_ro("vocab_size", &tr::ModelConfig::getVocabSize)
.def("vocab_size_padded", &tr::ModelConfig::getVocabSizePadded, nb::arg("world_size"))
.def("num_layers", &tr::ModelConfig::getNbLayers, nb::arg("pipeline_parallelism") = 1,
nb::arg("pipeline_parallelism_rank") = 0)
.def("num_attention_layers", &tr::ModelConfig::getNbAttentionLayers, nb::arg("pipeline_parallelism") = 1,
nb::arg("pipeline_parallelism_rank") = 0)
.def("num_rnn_layers", &tr::ModelConfig::getNbRnnLayers, nb::arg("pipeline_parallelism") = 1,
nb::arg("pipeline_parallelism_rank") = 0)
.def("num_kv_heads", &tr::ModelConfig::getNbKvHeads, nb::arg("layer_idx"))
.def("set_num_kv_heads", &tr::ModelConfig::setNbKvHeads, nb::arg("num_kv_heads"))
.def_prop_ro("num_heads", &tr::ModelConfig::getNbHeads)
.def_prop_ro("hidden_size", &tr::ModelConfig::getHiddenSize)
.def_prop_ro("size_per_head", &tr::ModelConfig::getSizePerHead)
.def_prop_ro("data_type", &tr::ModelConfig::getDataType)
.def_prop_ro("speculative_decoding_mode", &tr::ModelConfig::getSpeculativeDecodingMode)
.def_prop_rw("head_size", &tr::ModelConfig::getSizePerHead, &tr::ModelConfig::setSizePerHead)
.def_prop_rw(
"num_kv_heads_per_layer", &tr::ModelConfig::getNumKvHeadsPerLayer, &tr::ModelConfig::setNumKvHeadsPerLayer)
.def_prop_rw("use_gpt_attention_plugin",
nb::overload_cast<>(&tr::ModelConfig::useGptAttentionPlugin, nb::const_),
nb::overload_cast<bool>(&tr::ModelConfig::useGptAttentionPlugin))
.def_prop_rw("use_packed_input", nb::overload_cast<>(&tr::ModelConfig::usePackedInput, nb::const_),
nb::overload_cast<bool>(&tr::ModelConfig::usePackedInput))
.def_prop_rw("kv_cache_type", nb::overload_cast<>(&tr::ModelConfig::getKVCacheType, nb::const_),
nb::overload_cast<tr::ModelConfig::KVCacheType>(&tr::ModelConfig::setKVCacheType))
.def_prop_rw("tokens_per_block", &tr::ModelConfig::getTokensPerBlock, &tr::ModelConfig::setTokensPerBlock)
.def_prop_rw("quant_mode", &tr::ModelConfig::getQuantMode, &tr::ModelConfig::setQuantMode)
.def_prop_ro("supports_inflight_batching", &tr::ModelConfig::supportsInflightBatching)
.def_prop_rw("max_batch_size", &tr::ModelConfig::getMaxBatchSize, &tr::ModelConfig::setMaxBatchSize)
.def_prop_rw("max_beam_width", &tr::ModelConfig::getMaxBeamWidth, &tr::ModelConfig::setMaxBeamWidth)
.def_prop_rw("max_input_len", &tr::ModelConfig::getMaxInputLen, &tr::ModelConfig::setMaxInputLen)
.def_prop_rw("max_seq_len", &tr::ModelConfig::getMaxSequenceLen, &tr::ModelConfig::setMaxSequenceLen)
.def_prop_rw("max_num_tokens", &tr::ModelConfig::getMaxNumTokens, &tr::ModelConfig::setMaxNumTokens)
.def_prop_rw("max_prompt_embedding_table_size", &tr::ModelConfig::getMaxPromptEmbeddingTableSize,
&tr::ModelConfig::setMaxPromptEmbeddingTableSize)
.def_prop_ro("use_prompt_tuning", &tr::ModelConfig::usePromptTuning)
.def_prop_ro("use_mrope", &tr::ModelConfig::useMrope)
.def_prop_rw("use_lora_plugin", nb::overload_cast<>(&tr::ModelConfig::useLoraPlugin, nb::const_),
nb::overload_cast<bool>(&tr::ModelConfig::useLoraPlugin))
.def_prop_rw("layer_types", &tr::ModelConfig::getLayerTypes, &tr::ModelConfig::setLayerTypes)
.def_prop_rw("compute_context_logits", nb::overload_cast<>(&tr::ModelConfig::computeContextLogits, nb::const_),
nb::overload_cast<bool>(&tr::ModelConfig::computeContextLogits))
.def_prop_rw("compute_generation_logits",
nb::overload_cast<>(&tr::ModelConfig::computeGenerationLogits, nb::const_),
nb::overload_cast<bool>(&tr::ModelConfig::computeGenerationLogits))
.def_prop_rw("model_variant", &tr::ModelConfig::getModelVariant, &tr::ModelConfig::setModelVariant)
.def_prop_rw("use_cross_attention", &tr::ModelConfig::useCrossAttention, &tr::ModelConfig::setUseCrossAttention)
.def_prop_rw("lora_modules", &tr::ModelConfig::getLoraModules, &tr::ModelConfig::setLoraModules)
.def_prop_rw("max_lora_rank", &tr::ModelConfig::getMaxLoraRank, &tr::ModelConfig::setMaxLoraRank)
.def_prop_rw("mlp_hidden_size", &tr::ModelConfig::getMlpHiddenSize, &tr::ModelConfig::setMlpHiddenSize)
.def_prop_rw("size_per_head", &tr::ModelConfig::getSizePerHead, &tr::ModelConfig::setSizePerHead);
nb::class_<tr::WorldConfig>(m, "WorldConfig")
.def(nb::init<SizeType32, SizeType32, SizeType32, SizeType32, SizeType32,
std::optional<std::vector<SizeType32>> const&, bool>(),
nb::arg("tensor_parallelism") = 1, nb::arg("pipeline_parallelism") = 1, nb::arg("context_parallelism") = 1,
nb::arg("rank") = 0, nb::arg("gpus_per_node") = tr::WorldConfig::kDefaultGpusPerNode,
nb::arg("device_ids") = nb::none(), nb::arg("enable_attention_dp") = false)
.def_prop_ro("size", &tr::WorldConfig::getSize)
.def_prop_ro("tensor_parallelism", &tr::WorldConfig::getTensorParallelism)
.def_prop_ro("pipeline_parallelism", &tr::WorldConfig::getPipelineParallelism)
.def_prop_ro("context_parallelism", &tr::WorldConfig::getContextParallelism)
.def_prop_ro("is_tensor_parallel", &tr::WorldConfig::isTensorParallel)
.def_prop_ro("is_pipeline_parallel", &tr::WorldConfig::isPipelineParallel)
.def_prop_ro("is_context_parallel", &tr::WorldConfig::isContextParallel)
.def_prop_ro("rank", &tr::WorldConfig::getRank)
.def_prop_ro("local_rank", &tr::WorldConfig::getLocalRank)
.def_prop_ro("node_rank", &tr::WorldConfig::getNodeRank)
.def_prop_ro("gpus_per_node", &tr::WorldConfig::getGpusPerNode)
.def_prop_ro("gpus_per_group", &tr::WorldConfig::getGpusPerGroup)
.def_prop_ro("device", &tr::WorldConfig::getDevice)
.def_prop_ro("pipeline_parallel_rank", &tr::WorldConfig::getPipelineParallelRank)
.def_prop_ro("tensor_parallel_rank", &tr::WorldConfig::getTensorParallelRank)
.def_prop_ro("context_parallel_rank", &tr::WorldConfig::getContextParallelRank)
.def_prop_ro("enable_attention_dp", &tr::WorldConfig::enableAttentionDP)
.def_static("mpi",
nb::overload_cast<SizeType32, std::optional<SizeType32>, std::optional<SizeType32>,
std::optional<SizeType32>, std::optional<std::vector<SizeType32>> const&, bool>(&tr::WorldConfig::mpi),
nb::arg("gpus_per_node") = tr::WorldConfig::kDefaultGpusPerNode, nb::arg("tensor_parallelism") = nb::none(),
nb::arg("pipeline_parallelism") = nb::none(), nb::arg("context_parallelism") = nb::none(),
nb::arg("device_ids") = nb::none(), nb::arg("enable_attention_dp") = false);
auto SamplingConfigGetState = [](tr::SamplingConfig const& config) -> nb::tuple
{
return nb::make_tuple(config.beamWidth, config.temperature, config.minLength, config.repetitionPenalty,
config.presencePenalty, config.frequencyPenalty, config.promptIgnoreLength, config.topK, config.topP,
config.randomSeed, config.topPDecay, config.topPMin, config.topPResetIds, config.beamSearchDiversityRate,
config.lengthPenalty, config.earlyStopping, config.noRepeatNgramSize, config.numReturnSequences,
config.minP, config.beamWidthArray);
};
auto SamplingConfigSetState = [](tr::SamplingConfig& self, nb::tuple t)
{
if (t.size() != 20)
{
throw std::runtime_error("Invalid SamplingConfig state!");
}
tr::SamplingConfig config;
config.beamWidth = nb::cast<SizeType32>(t[0]);
config.temperature = nb::cast<OptVec<float>>(t[1]);
config.minLength = nb::cast<OptVec<SizeType32>>(t[2]);
config.repetitionPenalty = nb::cast<OptVec<float>>(t[3]);
config.presencePenalty = nb::cast<OptVec<float>>(t[4]);
config.frequencyPenalty = nb::cast<OptVec<float>>(t[5]);
config.promptIgnoreLength = nb::cast<OptVec<SizeType32>>(t[6]);
config.topK = nb::cast<OptVec<SizeType32>>(t[7]);
config.topP = nb::cast<OptVec<float>>(t[8]);
config.randomSeed = nb::cast<OptVec<uint64_t>>(t[9]);
config.topPDecay = nb::cast<OptVec<float>>(t[10]);
config.topPMin = nb::cast<OptVec<float>>(t[11]);
config.topPResetIds = nb::cast<OptVec<TokenIdType>>(t[12]);
config.beamSearchDiversityRate = nb::cast<OptVec<float>>(t[13]);
config.lengthPenalty = nb::cast<OptVec<float>>(t[14]);
config.earlyStopping = nb::cast<OptVec<SizeType32>>(t[15]);
config.noRepeatNgramSize = nb::cast<OptVec<SizeType32>>(t[16]);
config.numReturnSequences = nb::cast<SizeType32>(t[17]);
config.minP = nb::cast<OptVec<float>>(t[18]);
config.beamWidthArray = nb::cast<OptVec<std::vector<SizeType32>>>(t[19]);
new (&self) tr::SamplingConfig(config);
};
nb::class_<tr::SamplingConfig>(m, "SamplingConfig")
.def(nb::init<SizeType32>(), nb::arg("beam_width") = 1)
.def(nb::init<tle::SamplingConfig, std::optional<tle::ExternalDraftTokensConfig>>(),
nb::arg("executor_sample_config"), nb::arg("external_draft_tokens_config") = std::nullopt)
.def_rw("beam_width", &tr::SamplingConfig::beamWidth)
.def_rw("temperature", &tr::SamplingConfig::temperature)
.def_rw("min_length", &tr::SamplingConfig::minLength)
.def_rw("repetition_penalty", &tr::SamplingConfig::repetitionPenalty)
.def_rw("presence_penalty", &tr::SamplingConfig::presencePenalty)
.def_rw("frequency_penalty", &tr::SamplingConfig::frequencyPenalty)
.def_rw("prompt_ignore_length", &tr::SamplingConfig::promptIgnoreLength)
.def_rw("top_k", &tr::SamplingConfig::topK)
.def_rw("top_p", &tr::SamplingConfig::topP)
.def_rw("random_seed", &tr::SamplingConfig::randomSeed)
.def_rw("top_p_decay", &tr::SamplingConfig::topPDecay)
.def_rw("top_p_min", &tr::SamplingConfig::topPMin)
.def_rw("top_p_reset_ids", &tr::SamplingConfig::topPResetIds)
.def_rw("beam_search_diversity_rate", &tr::SamplingConfig::beamSearchDiversityRate)
.def_rw("length_penalty", &tr::SamplingConfig::lengthPenalty)
.def_rw("early_stopping", &tr::SamplingConfig::earlyStopping)
.def_rw("no_repeat_ngram_size", &tr::SamplingConfig::noRepeatNgramSize)
.def_rw("num_return_sequences", &tr::SamplingConfig::numReturnSequences)
.def_rw("min_p", &tr::SamplingConfig::minP)
.def_rw("beam_width_array", &tr::SamplingConfig::beamWidthArray)
.def_rw("normalize_log_probs", &tr::SamplingConfig::normalizeLogProbs)
.def("__getstate__", SamplingConfigGetState)
.def("__setstate__", SamplingConfigSetState)
.def("__eq__", &tr::SamplingConfig::operator==);
nb::bind_vector<std::vector<tr::SamplingConfig>>(m, "SamplingConfigVector");
m.def("make_sampling_config", &makeSamplingConfig, nb::arg("configs"));
nb::class_<tr::GptJsonConfig>(m, "GptJsonConfig")
.def(nb::init<std::string, std::string, std::string, SizeType32, SizeType32, SizeType32, SizeType32,
tr::ModelConfig, std::optional<tr::RuntimeDefaults>>(),
nb::arg("name"), nb::arg("version"), nb::arg("precision"), nb::arg("tensor_parallelism"),
nb::arg("pipeline_parallelism"), nb::arg("context_parallelism"), nb::arg("gpus_per_node"),
nb::arg("model_config"), nb::arg("runtime_defaults") = nb::none())
.def_static("parse", nb::overload_cast<std::string const&>(&tr::GptJsonConfig::parse), nb::arg("json"))
.def_static(
"parse_file", nb::overload_cast<std::filesystem::path const&>(&tr::GptJsonConfig::parse), nb::arg("path"))
.def_prop_ro("model_config", &tr::GptJsonConfig::getModelConfig)
.def_prop_ro("name", &tr::GptJsonConfig::getName)
.def_prop_ro("version", &tr::GptJsonConfig::getVersion)
.def_prop_ro("precision", &tr::GptJsonConfig::getPrecision)
.def_prop_ro("tensor_parallelism", &tr::GptJsonConfig::getTensorParallelism)
.def_prop_ro("pipeline_parallelism", &tr::GptJsonConfig::getPipelineParallelism)
.def_prop_ro("context_parallelism", &tr::GptJsonConfig::getContextParallelism)
.def_prop_ro("gpus_per_node", &tr::GptJsonConfig::getGpusPerNode)
.def_prop_ro("world_size", &tr::GptJsonConfig::getWorldSize)
.def_prop_ro("runtime_defaults", &tr::GptJsonConfig::getRuntimeDefaults)
.def("engine_filename",
nb::overload_cast<tr::WorldConfig const&, std::string const&>(
&tr::GptJsonConfig::engineFilename, nb::const_),
nb::arg("world_config"), nb::arg("model"))
.def("engine_filename",
nb::overload_cast<tr::WorldConfig const&>(&tr::GptJsonConfig::engineFilename, nb::const_),
nb::arg("world_config"));
nb::enum_<tb::LlmRequestState>(m, "LlmRequestState")
.value("UNKNOWN", tb::LlmRequestState::kUNKNOWN)
.value("ENCODER_INIT", tb::LlmRequestState::kENCODER_INIT)
.value("CONTEXT_INIT", tb::LlmRequestState::kCONTEXT_INIT)
.value("GENERATION_IN_PROGRESS", tb::LlmRequestState::kGENERATION_IN_PROGRESS)
.value("GENERATION_TO_COMPLETE", tb::LlmRequestState::kGENERATION_TO_COMPLETE)
.value("GENERATION_COMPLETE", tb::LlmRequestState::kGENERATION_COMPLETE)
.value("DISAGG_GENERATION_INIT", tb::LlmRequestState::kDISAGG_GENERATION_INIT)
.value("DISAGG_CONTEXT_TRANS_IN_PROGRESS", tb::LlmRequestState::kDISAGG_CONTEXT_TRANS_IN_PROGRESS)
.value("DISAGG_CONTEXT_COMPLETE", tb::LlmRequestState::kDISAGG_CONTEXT_COMPLETE)
.value("DISAGG_GENERATION_TRANS_IN_PROGRESS", tb::LlmRequestState::kDISAGG_GENERATION_TRANS_IN_PROGRESS)
.value("DISAGG_GENERATION_TRANS_COMPLETE", tb::LlmRequestState::kDISAGG_GENERATION_TRANS_COMPLETE)
.value("DISAGG_CONTEXT_INIT_AND_TRANS", tb::LlmRequestState::kDISAGG_CONTEXT_INIT_AND_TRANS)
.value("DISAGG_TRANS_ERROR", tb::LlmRequestState::kDISAGG_TRANS_ERROR);
nb::class_<tr::MemoryCounters>(m, "MemoryCounters")
.def_static("instance", &tr::MemoryCounters::getInstance, nb::rv_policy::reference)
.def_prop_ro("gpu", &tr::MemoryCounters::getGpu)
.def_prop_ro("cpu", &tr::MemoryCounters::getCpu)
.def_prop_ro("pinned", &tr::MemoryCounters::getPinned)
.def_prop_ro("uvm", &tr::MemoryCounters::getUVM);
tensorrt_llm::nanobind::process_group::initBindings(mInternalProcessGroup);
tpb::Buffers::initBindings(mInternalBatchManager);
tensorrt_llm::nanobind::runtime::initBindings(mInternalRuntime);
tensorrt_llm::nanobind::testing::initBindings(mInternalTesting);
tpb::initBindings(mInternalBatchManager);
tb::kv_cache_manager::KVCacheManagerConnectorBindings::initBindings(mInternalBatchManager);
tb::kv_cache_manager::KVCacheManagerBindings::initBindings(mInternalBatchManager);
tb::BasePeftCacheManagerBindings::initBindings(mInternalBatchManager);
tb::CacheTransceiverBindings::initBindings(mInternalBatchManager);
auto mInternalAlgorithms = mInternal.def_submodule("algorithms", "Algorithms internal bindings");
tpb::algorithms::initBindings(mInternalAlgorithms);
auto mUserbuffers = mInternal.def_submodule("userbuffers", "User buffers internal bindings");
tensorrt_llm::kernels::userbuffers::UserBufferBindings::initBindings(mUserbuffers);
// NVLS allocators
nb::class_<tr::IpcNvlsHandle>(m, "IpcNvlsHandle")
.def(nb::init<>())
.def_rw("uc_ptr", &tr::IpcNvlsHandle::uc_ptr)
.def_rw("mc_ptr", &tr::IpcNvlsHandle::mc_ptr)
.def_rw("size", &tr::IpcNvlsHandle::size)
.def("get_ipc_ptrs",
[](tr::IpcNvlsHandle& self) { return reinterpret_cast<uintptr_t>(self.ipc_uc_ptrs.data()); });
m.def("ipc_nvls_allocate", &tr::ipcNvlsAllocate, nb::rv_policy::reference);
m.def("ipc_nvls_free", &tr::ipcNvlsFree);
m.def("ipc_nvls_supported", &tr::ipcNvlsSupported);
m.def("steady_clock_now", []() { return std::chrono::steady_clock::now(); });
}