TensorRT-LLMs/cpp/tensorrt_llm/nanobind/common/customCasters.h
Linda 898f37faa0
[None][feat] Enable nanobind as the default binding library (#6608)
Signed-off-by: Linda-Stadter <57756729+Linda-Stadter@users.noreply.github.com>
2025-08-22 09:48:41 +02:00

320 lines
9.6 KiB
C++

/*
* Copyright (c) 2024-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/batch_manager/common.h"
#include "tensorrt_llm/batch_manager/decoderBuffers.h"
#include "tensorrt_llm/common/optionalRef.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/samplingConfig.h"
#include "tensorrt_llm/runtime/torch.h"
#include "tensorrt_llm/runtime/torchView.h"
#include <ATen/DLConvertor.h>
#include <nanobind/nanobind.h>
#include <nanobind/stl/filesystem.h>
#include <nanobind/stl/optional.h>
#include <nanobind/stl/string.h>
#include <nanobind/stl/vector.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/extension.h>
#include <torch/torch.h>
#include <deque>
// Pybind requires to have a central include in order for type casters to work.
// Opaque bindings add a type caster, so they have the same requirement.
// See the warning in https://pybind11.readthedocs.io/en/stable/advanced/cast/custom.html
// Opaque bindings
NB_MAKE_OPAQUE(tensorrt_llm::batch_manager::ReqIdsSet)
NB_MAKE_OPAQUE(std::vector<tensorrt_llm::batch_manager::SlotDecoderBuffers>)
NB_MAKE_OPAQUE(std::vector<tensorrt_llm::runtime::SamplingConfig>)
namespace nb = nanobind;
// Custom casters
namespace NB_NAMESPACE
{
namespace detail
{
template <typename T, typename Alloc>
struct type_caster<std::deque<T, Alloc>>
{
using Type = std::deque<T, Alloc>;
NB_TYPE_CASTER(Type, const_name("List"));
bool from_python(handle src, uint8_t flags, cleanup_list* cleanup) noexcept
{
sequence seq(src, nanobind::detail::borrow_t{});
value.clear();
make_caster<T> caster;
for (auto const& item : seq)
{
if (!caster.from_python(item, flags, cleanup))
return false;
value.push_back(caster.operator T&());
}
return true;
}
static handle from_cpp(Type const& deque, rv_policy policy, cleanup_list* cleanup) noexcept
{
nb::list list;
for (auto const& item : deque)
{
nb::object py_item = steal(make_caster<T>::from_cpp(item, policy, cleanup));
if (!py_item)
return {};
list.append(py_item);
}
return list.release();
}
};
template <typename T>
struct type_caster<tensorrt_llm::common::OptionalRef<T>>
{
using value_conv = make_caster<T>;
NB_TYPE_CASTER(tensorrt_llm::common::OptionalRef<T>, value_conv::Name);
bool from_python(handle src, uint8_t flags, cleanup_list* cleanup)
{
if (src.is_none())
{
// If the Python object is None, create an empty OptionalRef
value = tensorrt_llm::common::OptionalRef<T>();
return true;
}
value_conv conv;
if (!conv.from_python(src, flags, cleanup))
return false;
// Create an OptionalRef with a reference to the converted value
value = tensorrt_llm::common::OptionalRef<T>(conv);
return true;
}
static handle from_cpp(tensorrt_llm::common::OptionalRef<T> const& src, rv_policy policy, cleanup_list* cleanup)
{
if (!src.has_value())
return none().release();
return value_conv::from_cpp(*src, policy, cleanup);
}
};
template <>
class type_caster<tensorrt_llm::executor::StreamPtr>
{
public:
NB_TYPE_CASTER(tensorrt_llm::executor::StreamPtr, const_name("int"));
bool from_python([[maybe_unused]] handle src, uint8_t flags, cleanup_list* cleanup)
{
auto stream_ptr = nanobind::cast<uintptr_t>(src);
value = std::make_shared<tensorrt_llm::runtime::CudaStream>(reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
static handle from_cpp(
tensorrt_llm::executor::StreamPtr const& src, rv_policy /* policy */, cleanup_list* /* cleanup */)
{
// Return cudaStream_t as integer.
return PyLong_FromVoidPtr(src->get());
}
};
template <>
struct type_caster<tensorrt_llm::executor::Tensor>
{
public:
NB_TYPE_CASTER(tensorrt_llm::executor::Tensor, const_name("torch.Tensor"));
// Convert PyObject(torch.Tensor) -> tensorrt_llm::executor::Tensor
bool from_python(handle src, uint8_t flags, cleanup_list* cleanup)
{
PyObject* obj = src.ptr();
if (THPVariable_Check(obj))
{
at::Tensor const& t = THPVariable_Unpack(obj);
value = tensorrt_llm::executor::detail::ofITensor(tensorrt_llm::runtime::TorchView::of(t));
return true;
}
return false;
}
// Convert tensorrt_llm::executor::Tensor -> PyObject(torch.Tensor)
static handle from_cpp(
tensorrt_llm::executor::Tensor const& src, rv_policy /* policy */, cleanup_list* /* cleanup */)
{
return THPVariable_Wrap(tensorrt_llm::runtime::Torch::tensor(tensorrt_llm::executor::detail::toITensor(src)));
}
};
template <>
struct type_caster<tensorrt_llm::runtime::ITensor::SharedPtr>
{
public:
NB_TYPE_CASTER(tensorrt_llm::runtime::ITensor::SharedPtr, const_name("torch.Tensor"));
// Convert PyObject(torch.Tensor) -> tensorrt_llm::runtime::ITensor::SharedPtr
bool from_python(handle src, uint8_t, cleanup_list*)
{
PyObject* obj = src.ptr();
if (THPVariable_Check(obj))
{
at::Tensor const& t = THPVariable_Unpack(obj);
value = std::move(tensorrt_llm::runtime::TorchView::of(t));
return true;
}
return false;
}
// Convert tensorrt_llm::runtime::ITensor::SharedPtr -> PyObject(torch.Tensor)
static handle from_cpp(
tensorrt_llm::runtime::ITensor::SharedPtr const& src, rv_policy /* policy */, cleanup_list* /* cleanup */)
{
if (src == nullptr)
{
return none().release();
}
return THPVariable_Wrap(tensorrt_llm::runtime::Torch::tensor(src));
}
};
template <>
struct type_caster<tensorrt_llm::runtime::ITensor::SharedConstPtr>
{
public:
NB_TYPE_CASTER(tensorrt_llm::runtime::ITensor::SharedConstPtr, const_name("torch.Tensor"));
// Convert PyObject(torch.Tensor) -> tensorrt_llm::runtime::ITensor::SharedConstPtr
bool from_python(handle src, uint8_t, cleanup_list*)
{
PyObject* obj = src.ptr();
if (THPVariable_Check(obj))
{
at::Tensor const& t = THPVariable_Unpack(obj);
value = std::move(tensorrt_llm::runtime::TorchView::of(t));
return true;
}
return false;
}
// Convert tensorrt_llm::runtime::ITensor::SharedConstPtr -> PyObject(torch.Tensor)
static handle from_cpp(
tensorrt_llm::runtime::ITensor::SharedConstPtr const& src, rv_policy /* policy */, cleanup_list* /* cleanup */)
{
if (src == nullptr)
{
return none().release();
}
return THPVariable_Wrap(tensorrt_llm::runtime::Torch::tensor(
reinterpret_cast<tensorrt_llm::runtime::ITensor::SharedPtr const&>(src)));
}
};
template <>
struct type_caster<at::Tensor>
{
NB_TYPE_CASTER(at::Tensor, const_name("torch.Tensor"));
bool from_python(nb::handle src, uint8_t, cleanup_list*) noexcept
{
PyObject* obj = src.ptr();
if (THPVariable_Check(obj))
{
value = THPVariable_Unpack(obj);
return true;
}
return false;
}
static handle from_cpp(at::Tensor src, rv_policy, cleanup_list*) noexcept
{
return THPVariable_Wrap(src);
}
};
template <typename T>
struct type_caster<std::vector<std::reference_wrapper<T const>>>
{
using VectorType = std::vector<std::reference_wrapper<T const>>;
NB_TYPE_CASTER(VectorType, const_name("List[") + make_caster<T>::Name + const_name("]"));
bool from_python(handle src, uint8_t flags, cleanup_list* cleanup) noexcept
{
// Not needed for our use case since we only convert C++ to Python
return false;
}
static handle from_cpp(VectorType const& src, rv_policy policy, cleanup_list* cleanup) noexcept
{
std::vector<T> result;
result.reserve(src.size());
for (auto const& ref : src)
{
result.push_back(ref.get());
}
return make_caster<std::vector<T>>::from_cpp(result, policy, cleanup);
}
};
template <>
struct type_caster<torch::ScalarType>
{
NB_TYPE_CASTER(torch::ScalarType, const_name("torch.dtype"));
bool from_python(handle src, uint8_t flags, cleanup_list* cleanup) noexcept
{
std::string dtype_name = nb::cast<std::string>(nb::str(src));
if (dtype_name.substr(0, 6) == "torch.")
{
dtype_name = dtype_name.substr(6);
}
auto const& dtype_map = c10::getStringToDtypeMap();
auto it = dtype_map.find(dtype_name);
if (it != dtype_map.end())
{
value = it->second;
return true;
}
return false;
}
static handle from_cpp(torch::ScalarType src, rv_policy policy, cleanup_list* cleanup)
{
throw std::runtime_error("from_cpp for torch::ScalarType is not implemented");
}
};
} // namespace detail
} // namespace NB_NAMESPACE