TensorRT-LLMs/cpp/tensorrt_llm/plugins/gemmAllReducePlugin/gemmAllReducePlugin.h
xavier-nvidia 200ea9ee81
fix TMA error with GEMM+AR on TP=2 (#6075)
Signed-off-by: Xavier Simmons <xsimmons@nvidia.com>
2025-07-18 10:26:08 +08:00

190 lines
6.0 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#if defined(USING_OSS_CUTLASS_ALLREDUCE_GEMM)
#include "tensorrt_llm/kernels/cutlass_kernels/include/allreduce_gemm_runner.h"
#else
#include "allreduce_gemm_runner.h"
#endif
#include "gemmAllReducePluginProfiler.h"
#include "gemmAllReducePluginResource.h"
#include "tensorrt_llm/plugins/common/plugin.h"
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
using namespace nvinfer1;
using nvinfer1::DataType;
#if defined(USING_OSS_CUTLASS_ALLREDUCE_GEMM)
namespace cutlass_kernels = ::tensorrt_llm::kernels::opened_cutlass_kernels;
#else
namespace cutlass_kernels = ::tensorrt_llm::kernels::cutlass_kernels;
#endif
using LaunchConfig = typename cutlass_kernels::GemmAllReduceImplInterface::LaunchConfig;
namespace tensorrt_llm::plugins
{
struct GemmAllReducePluginOptions
{
// Don't need to specify problem shape, this
// is specified in configurePlugin
DataType typeA;
DataType typeB;
DataType typeD;
int transA;
int transB;
float alpha;
// ranks participating in collective
std::set<int> group;
int groupSize;
// Set in configurePlugin during build phase
GemmDims maxProblemShape;
bool deserialize; // used for profiler instantiation
int8_t hasSFA = 0;
int8_t hasSFB = 0;
int8_t alphaIsPtr = 0;
};
class GemmAllReducePlugin : public BasePlugin
{
friend class GemmAllReducePluginCreator;
public:
~GemmAllReducePlugin() override = default;
//////////////////////////////////
// IPluginV2DynamicExt Methods
//////////////////////////////////
IPluginV2DynamicExt* clone() const noexcept override;
DimsExprs getOutputDimensions(
int outputIndex, DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept override;
// inOut[0] -> activation
// inOut[1] -> weight
// inOut[2] -> result
bool supportsFormatCombination(
int32_t pos, PluginTensorDesc const* inOut, int32_t nbInputs, int32_t nbOutputs) noexcept override;
// in[0] -> activation
// in[1] -> weight
// no bias needed
void configurePlugin(DynamicPluginTensorDesc const* in, int32_t nbInputs, DynamicPluginTensorDesc const* out,
int32_t nbOutputs) noexcept override;
size_t getWorkspaceSize(PluginTensorDesc const* inputs, int32_t nbInputs, PluginTensorDesc const* outputs,
int32_t nbOutputs) const noexcept override;
// in[0] -> activation
// in[1] -> weight
// out[0] -> result_uc
// out[1] -> result_mc
int enqueue(PluginTensorDesc const* inputDesc, PluginTensorDesc const* outputDesc, void const* const* inputs,
void* const* outputs, void* workspace, cudaStream_t stream) noexcept override;
//////////////////////////////////
// IPluginV2Ext Methods
//////////////////////////////////
DataType getOutputDataType(int index, DataType const* inputTypes, int nbInputs) const noexcept override;
//////////////////////////////////
// IPluginV2 Methods
//////////////////////////////////
char const* getPluginType() const noexcept override;
char const* getPluginVersion() const noexcept override;
int getNbOutputs() const noexcept override;
int initialize() noexcept override;
void terminate() noexcept override;
size_t getSerializationSize() const noexcept override;
void serialize(void* buffer) const noexcept override;
void destroy() noexcept override;
private:
explicit GemmAllReducePlugin(GemmAllReducePluginOptions const& options);
// Parameterized constructor
explicit GemmAllReducePlugin(void const* data, size_t length);
void allocatePersistentWorkspace();
LaunchConfig getStaticHeuristicLaunchConfig(int M) const;
// Params that are initialized during constructor
using KeyType = std::tuple<DataType, DataType, DataType>;
using ValueType = std::function<cutlass_kernels::GemmAllReduceImplInterface*()>;
GemmAllReducePluginOptions mOptions;
int mRank = 0;
enum TensorArg
{
IN_ACTIVATION,
IN_ACTIVATION_SF,
IN_WEIGHT,
IN_WEIGHT_SF,
IN_ALPHA,
OUT_D_UC,
OUT_D_MC,
OUT_D_IPC
};
std::unordered_map<int, TensorArg> mArgMap;
std::unordered_map<TensorArg, int> mArgInvMap;
int mNbInputs = 0;
int mNbOutputs = 0;
std::map<KeyType, ValueType> mTypedInstantiators;
std::string mWorkspaceKey;
std::shared_ptr<cutlass_kernels::GemmAllReduceImplInterface> mGemm;
// Params that are initialized during configurePlugin()
GemmAllReducePersistentWorkspace* mWorkspace = nullptr;
// Used for selecting best GEMM for given problem shapes
GemmIdCore mGemmId{};
GemmPluginProfilerManager<GemmAllReducePluginProfiler> mGemmPluginProfileManager;
std::shared_ptr<GemmAllReducePluginProfiler> mProfiler;
};
class GemmAllReducePluginCreator : public BaseCreator
{
public:
GemmAllReducePluginCreator();
char const* getPluginName() const noexcept override;
char const* getPluginVersion() const noexcept override;
nvinfer1::PluginFieldCollection const* getFieldNames() noexcept override;
nvinfer1::IPluginV2* createPlugin(char const* name, nvinfer1::PluginFieldCollection const* fc) noexcept override;
nvinfer1::IPluginV2* deserializePlugin(
char const* name, void const* serialData, size_t serialLength) noexcept override;
private:
static nvinfer1::PluginFieldCollection mFC;
static std::vector<nvinfer1::PluginField> mPluginAttributes;
};
} // namespace tensorrt_llm::plugins