TensorRT-LLMs/cpp/tensorrt_llm/plugins/gemmAllReducePlugin/gemmAllReducePluginProfiler.h
xavier-nvidia b6013da198
Fix GEMM+AR fusion on blackwell (#5563)
Signed-off-by: xsimmons <xsimmons@nvidia.com>
2025-07-09 08:48:47 +08:00

69 lines
2.5 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#if defined(USING_OSS_CUTLASS_ALLREDUCE_GEMM)
#include "tensorrt_llm/kernels/cutlass_kernels/include/allreduce_gemm_runner.h"
#else
#include "allreduce_gemm_runner.h"
#endif
#include "tensorrt_llm/plugins/common/gemmPluginProfiler.h"
#include "tensorrt_llm/plugins/common/plugin.h"
namespace tensorrt_llm::plugins
{
/*
* Used for tuning to find best GEMM configs for different problem shapes.
* WARNING: Tuning GEMM+AR kernel may not be fully representable of real
* multi-GPU workloads as tuning only runs on single-GPU.
* IMPORTANT: TRT-LLM does not support deterministic tuning across ranks.
* Because of this, we have to serialize/deserialize our own configuration file.
*/
#if defined(USING_OSS_CUTLASS_ALLREDUCE_GEMM)
namespace cutlass_kernels = ::tensorrt_llm::kernels::opened_cutlass_kernels;
#else
namespace cutlass_kernels = ::tensorrt_llm::kernels::cutlass_kernels;
#endif
class GemmAllReducePluginProfiler
: public GemmPluginProfiler<cutlass_kernels::GemmAllReduceImplInterface::LaunchConfig,
std::shared_ptr<cutlass_kernels::GemmAllReduceImplInterface>, GemmIdCore, GemmIdCoreHash>
{
public:
void serializeToOwnFile(GemmIdCore gemmId);
void deserializeFromOwnFile(GemmIdCore gemmId, GemmDims problemShape);
bool useProfiler();
protected:
////////////////////////////////////
// GemmPluginProfiler methods
////////////////////////////////////
void runTactic(int m, int n, int k, cutlass_kernels::GemmAllReduceImplInterface::LaunchConfig const& tactic,
char* workspace, cudaStream_t const& stream) override;
void computeTmpSize(size_t maxM, size_t n, size_t k) override;
std::vector<cutlass_kernels::GemmAllReduceImplInterface::LaunchConfig> getTactics(
int m, int n, int k) const override;
private:
static std::string getCacheFileName(GemmIdCore gemmId);
};
} // namespace tensorrt_llm::plugins