TensorRT-LLMs/cpp/tensorrt_llm/runtime/bufferManager.cpp
Yuan Tong a2f271c8e0
[TRTLLM-4406][feat] LLM sleep & wakeup Part 1: virtual device memory (#5034)
Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>
2025-08-04 13:51:01 +08:00

285 lines
8.9 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bufferManager.h"
#include "cudaMemPool.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tllmBuffers.h"
#include <cstring>
#include <cuda_runtime_api.h>
#include <memory>
namespace tc = tensorrt_llm::common;
namespace tensorrt_llm::runtime
{
BufferManager::BufferManager(CudaStreamPtr stream, bool trimPool)
: mStream{std::move(stream)}
, mTrimPool{trimPool}
{
TLLM_CHECK_WITH_INFO(static_cast<bool>(mStream), "Undefined CUDA stream");
mPool = CudaMemPool::getPrimaryPoolForDevice(mStream->getDevice());
}
BufferManager::IBufferPtr BufferManager::gpu(std::size_t size, nvinfer1::DataType type) const
{
if (auto vmAllocator = getVirtualMemoryAllocator())
{
return std::make_unique<VirtualAddressDeviceBuffer>(size, type, std::move(vmAllocator));
}
if (static_cast<bool>(mPool))
{
return std::make_unique<DeviceBuffer>(size, type, CudaAllocatorAsync{mStream, mPool});
}
// When memory pools are not supported, fallback to synchronous memory allocations.
return gpuSync(size, type);
}
BufferManager::ITensorPtr BufferManager::gpu(nvinfer1::Dims dims, nvinfer1::DataType type) const
{
if (auto vmAllocator = getVirtualMemoryAllocator())
{
return std::make_unique<VirtualAddressDeviceTensor>(dims, type, std::move(vmAllocator));
}
if (static_cast<bool>(mPool))
{
return std::make_unique<DeviceTensor>(dims, type, CudaAllocatorAsync{mStream, mPool});
}
// When memory pools are not supported, fallback to synchronous memory allocations.
return gpuSync(dims, type);
}
BufferManager::IBufferPtr BufferManager::gpuSync(std::size_t size, nvinfer1::DataType type)
{
if (auto vmAllocator = getVirtualMemoryAllocator())
{
return std::make_unique<VirtualAddressDeviceBuffer>(size, type, std::move(vmAllocator));
}
return std::make_unique<StaticDeviceBuffer>(size, type, CudaAllocator{});
}
BufferManager::ITensorPtr BufferManager::gpuSync(nvinfer1::Dims dims, nvinfer1::DataType type)
{
if (auto vmAllocator = getVirtualMemoryAllocator())
{
return std::make_unique<VirtualAddressDeviceTensor>(dims, type, std::move(vmAllocator));
}
return std::make_unique<StaticDeviceTensor>(dims, type, CudaAllocator{});
}
BufferManager::IBufferPtr BufferManager::cpu(std::size_t size, nvinfer1::DataType type)
{
return std::make_unique<HostBuffer>(size, type);
}
BufferManager::ITensorPtr BufferManager::cpu(nvinfer1::Dims dims, nvinfer1::DataType type)
{
return std::make_unique<HostTensor>(dims, type);
}
BufferManager::IBufferPtr BufferManager::pinned(std::size_t size, nvinfer1::DataType type)
{
return std::make_unique<PinnedBuffer>(size, type);
}
BufferManager::ITensorPtr BufferManager::pinned(nvinfer1::Dims dims, nvinfer1::DataType type)
{
return std::make_unique<PinnedTensor>(dims, type);
}
BufferManager::IBufferPtr BufferManager::pinnedPool(std::size_t size, nvinfer1::DataType type)
{
return std::make_unique<PinnedPoolBuffer>(size, type);
}
BufferManager::ITensorPtr BufferManager::pinnedPool(nvinfer1::Dims dims, nvinfer1::DataType type)
{
return std::make_unique<PinnedPoolTensor>(dims, type);
}
BufferManager::IBufferPtr BufferManager::managed(std::size_t size, nvinfer1::DataType type)
{
return std::make_unique<UVMBuffer>(size, type);
}
BufferManager::ITensorPtr BufferManager::managed(nvinfer1::Dims dims, nvinfer1::DataType type)
{
return std::make_unique<UVMTensor>(dims, type);
}
BufferManager::ITensorPtr BufferManager::ipcNvls(std::set<int> ranks, nvinfer1::Dims dims, nvinfer1::DataType type)
{
return std::make_unique<MulticastTensor>(dims, type, ranks);
}
void BufferManager::setZero(IBuffer& buffer) const
{
setMem(buffer, 0);
}
void BufferManager::setMem(IBuffer& buffer, int32_t value) const
{
if (buffer.getMemoryType() == MemoryType::kGPU)
{
TLLM_CUDA_CHECK(cudaMemsetAsync(buffer.data(), value, buffer.getSizeInBytes(), mStream->get()));
}
else
{
std::memset(buffer.data(), value, buffer.getSizeInBytes());
}
}
void BufferManager::copy(void const* src, IBuffer& dst, MemoryType srcType) const
{
if (dst.getSizeInBytes() > 0)
{
if (srcType != MemoryType::kGPU && dst.getMemoryType() != MemoryType::kGPU)
{
std::memcpy(dst.data(), src, dst.getSizeInBytes());
}
else
{
TLLM_CUDA_CHECK(tensorrt_llm::common::cudaMemcpyAsyncSanitized(
dst.data(), src, dst.getSizeInBytes(), cudaMemcpyDefault, mStream->get()));
}
}
}
void BufferManager::copy(IBuffer const& src, void* dst, MemoryType dstType) const
{
if (src.getSizeInBytes() > 0)
{
if (src.getMemoryType() != MemoryType::kGPU && dstType != MemoryType::kGPU)
{
std::memcpy(dst, src.data(), src.getSizeInBytes());
}
else
{
TLLM_CUDA_CHECK(tensorrt_llm::common::cudaMemcpyAsyncSanitized(
dst, src.data(), src.getSizeInBytes(), cudaMemcpyDefault, mStream->get()));
}
}
}
void BufferManager::copy(IBuffer const& src, IBuffer& dst) const
{
TLLM_CHECK_WITH_INFO(src.getDataType() == dst.getDataType(),
tc::fmtstr("Incompatible data types: %s != %s", src.getDataTypeName(), dst.getDataTypeName()));
TLLM_CHECK_WITH_INFO(src.getSizeInBytes() == dst.getSizeInBytes(),
tc::fmtstr("Incompatible buffer sizes: %lu != %lu", src.getSizeInBytes(), dst.getSizeInBytes()));
copy(src, dst.data(), dst.getMemoryType());
}
BufferManager::IBufferPtr BufferManager::allocate(
MemoryType memoryType, std::size_t size, nvinfer1::DataType type) const
{
switch (memoryType)
{
case MemoryType::kCPU: return cpu(size, type);
case MemoryType::kGPU: return gpu(size, type);
case MemoryType::kPINNED: return pinned(size, type);
case MemoryType::kUVM: return managed(size, type);
case MemoryType::kPINNEDPOOL: return pinnedPool(size, type);
}
TLLM_THROW("Unknown memory type");
}
BufferManager::ITensorPtr BufferManager::allocate(
MemoryType memoryType, nvinfer1::Dims dims, nvinfer1::DataType type) const
{
switch (memoryType)
{
case MemoryType::kCPU: return cpu(dims, type);
case MemoryType::kGPU: return gpu(dims, type);
case MemoryType::kPINNED: return pinned(dims, type);
case MemoryType::kUVM: return managed(dims, type);
case MemoryType::kPINNEDPOOL: return pinnedPool(dims, type);
}
TLLM_THROW("Unknown memory type");
}
BufferManager::IBufferPtr BufferManager::copyFrom(IBuffer const& src, MemoryType memoryType) const
{
auto dst = allocate(memoryType, src.getSize(), src.getDataType());
copy(src, *dst);
return dst;
}
BufferManager::ITensorPtr BufferManager::copyFrom(ITensor const& src, MemoryType memoryType) const
{
auto dst = allocate(memoryType, src.getShape(), src.getDataType());
copy(src, *dst);
return dst;
}
CudaStream const& BufferManager::getStream() const
{
return *mStream;
}
std::size_t BufferManager::memoryPoolReserved() const
{
if (!static_cast<bool>(mPool))
{
TLLM_LOG_TRACE(
"Operation '%s' trivially returns zero on systems without memory pool support.", __PRETTY_FUNCTION__);
return 0;
}
mStream->synchronize();
return mPool->memoryPoolReserved();
}
std::size_t BufferManager::memoryPoolUsed() const
{
if (!static_cast<bool>(mPool))
{
TLLM_LOG_TRACE(
"Operation '%s' trivially returns zero on systems without memory pool support.", __PRETTY_FUNCTION__);
return 0;
}
mStream->synchronize();
return mPool->memoryPoolUsed();
}
std::size_t BufferManager::memoryPoolFree() const
{
if (!static_cast<bool>(mPool))
{
TLLM_LOG_TRACE(
"Operation '%s' trivially returns zero on systems without memory pool support.", __PRETTY_FUNCTION__);
return 0;
}
mStream->synchronize();
return mPool->memoryPoolReserved() - mPool->memoryPoolUsed();
}
void BufferManager::memoryPoolTrimTo(std::size_t size)
{
if (!static_cast<bool>(mPool))
{
TLLM_LOG_TRACE("Operation '%s' does not do anything on this system as it does not support memory pools.",
__PRETTY_FUNCTION__);
return;
}
mPool->memoryPoolTrimTo(size);
}
} // namespace tensorrt_llm::runtime