mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
76 lines
3.5 KiB
C++
76 lines
3.5 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/runtime/decodingOutput.h"
|
|
#include "tensorrt_llm/runtime/runtimeKernels.h"
|
|
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
void DecodingOutput::BeamHypotheses::empty(BufferManager const& manager)
|
|
{
|
|
auto constexpr nvTokenIdType = TRTDataType<TokenIdType>::value;
|
|
auto constexpr nvSizeType = TRTDataType<SizeType32>::value;
|
|
auto constexpr nvFloatType = TRTDataType<float>::value;
|
|
auto constexpr nvBoolType = TRTDataType<bool>::value;
|
|
|
|
outputIdsCBA = manager.emptyTensor(MemoryType::kGPU, nvTokenIdType);
|
|
logProbsCBA = manager.emptyTensor(MemoryType::kGPU, nvFloatType);
|
|
sequenceLengthsCBA = manager.emptyTensor(MemoryType::kGPU, nvSizeType);
|
|
cumLogProbsCBA = manager.emptyTensor(MemoryType::kGPU, nvFloatType);
|
|
normedScoresCBA = manager.emptyTensor(MemoryType::kGPU, nvFloatType);
|
|
numBeamsCBA = manager.emptyTensor(MemoryType::kGPU, nvSizeType);
|
|
minNormedScoresCBA = manager.emptyTensor(MemoryType::kGPU, nvFloatType);
|
|
batchDones = manager.emptyTensor(MemoryType::kGPU, nvBoolType);
|
|
}
|
|
|
|
void DecodingOutput::BeamHypotheses::reshape(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 maxSequenceLength)
|
|
{
|
|
outputIdsCBA->reshape(ITensor::makeShape({batchSize, 2 * beamWidth, maxSequenceLength}));
|
|
logProbsCBA->reshape(ITensor::makeShape({batchSize, 2 * beamWidth, maxSequenceLength}));
|
|
sequenceLengthsCBA->reshape(ITensor::makeShape({batchSize, 2 * beamWidth}));
|
|
cumLogProbsCBA->reshape(ITensor::makeShape({batchSize, 2 * beamWidth}));
|
|
normedScoresCBA->reshape(ITensor::makeShape({batchSize, 2 * beamWidth}));
|
|
numBeamsCBA->reshape(ITensor::makeShape({batchSize}));
|
|
minNormedScoresCBA->reshape(ITensor::makeShape({batchSize}));
|
|
batchDones->reshape(ITensor::makeShape({batchSize}));
|
|
}
|
|
|
|
void DecodingOutput::BeamHypotheses::init(BufferManager const& manager, TokenIdType endId)
|
|
{
|
|
kernels::invokeFill(*outputIdsCBA, endId, manager.getStream());
|
|
manager.setZero(*logProbsCBA);
|
|
manager.setZero(*sequenceLengthsCBA);
|
|
manager.setZero(*cumLogProbsCBA);
|
|
manager.setZero(*normedScoresCBA);
|
|
manager.setZero(*numBeamsCBA);
|
|
manager.setZero(*minNormedScoresCBA);
|
|
manager.setZero(*batchDones);
|
|
}
|
|
|
|
DecodingOutput::BeamHypotheses DecodingOutput::BeamHypotheses::slice(SizeType32 batchIndex, SizeType32 size) const
|
|
{
|
|
DecodingOutput::BeamHypotheses bh{};
|
|
bh.outputIdsCBA = ITensor::slice(outputIdsCBA, batchIndex, size);
|
|
bh.logProbsCBA = ITensor::slice(logProbsCBA, batchIndex, size);
|
|
bh.sequenceLengthsCBA = ITensor::slice(sequenceLengthsCBA, batchIndex, size);
|
|
bh.cumLogProbsCBA = ITensor::slice(cumLogProbsCBA, batchIndex, size);
|
|
bh.normedScoresCBA = ITensor::slice(normedScoresCBA, batchIndex, size);
|
|
bh.numBeamsCBA = ITensor::slice(numBeamsCBA, batchIndex, size);
|
|
bh.minNormedScoresCBA = ITensor::slice(minNormedScoresCBA, batchIndex, size);
|
|
bh.batchDones = ITensor::slice(batchDones, batchIndex, size);
|
|
return bh;
|
|
}
|