TensorRT-LLMs/cpp/tensorrt_llm/runtime/explicitDraftTokensBuffers.cpp
2025-03-11 21:13:42 +08:00

380 lines
20 KiB
C++

/*
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/explicitDraftTokensBuffers.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/kernels/speculativeDecoding/explicitDraftTokensKernels.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/iBuffer.h"
namespace tksd = tensorrt_llm::kernels::speculative_decoding;
namespace tensorrt_llm::runtime
{
void ExplicitDraftTokensBuffers::Inputs::create(SizeType32 maxNumSequences, BufferManager const& manager,
ModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
auto const& speculativeDecodingModule = modelConfig.getSpeculativeDecodingModule();
auto const maxNumPaths = speculativeDecodingModule.getMaxNumPaths();
auto const maxDraftPathLen = speculativeDecodingModule.getMaxDraftPathLen();
auto const maxPathLen = speculativeDecodingModule.getMaxPathLen();
auto const maxDecodingTokens = speculativeDecodingModule.getMaxDecodingTokens();
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
auto constexpr TRTTokenIdType = runtime::TRTDataType<runtime::TokenIdType>::value;
auto const dtype = modelConfig.getDataType();
maxGenLengthHost = manager.pinned(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
temperatures = manager.gpu(ITensor::makeShape({maxNumSequences}), dtype);
positionIdsBase = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
generationLengths = manager.gpu(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
generationLengthsHost = manager.pinned(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
randomDataSample = manager.gpu(ITensor::makeShape({maxNumSequences}), dtype);
randomDataValidation = manager.gpu(ITensor::makeShape({maxNumSequences, maxNumPaths, maxDraftPathLen}), dtype);
draftTokens = manager.gpu(ITensor::makeShape({maxNumSequences, maxNumPaths, maxPathLen}), TRTTokenIdType);
draftIndices
= manager.gpu(ITensor::makeShape({maxNumSequences, maxNumPaths, maxPathLen}), nvinfer1::DataType::kINT32);
draftProbs
= manager.gpu(ITensor::makeShape({maxNumSequences, maxNumPaths, maxDraftPathLen, vocabSizePadded}), dtype);
packedMasks
= manager.gpu(ITensor::makeShape({maxNumSequences, maxDecodingTokens, common::ceilDiv(maxDecodingTokens, 32)}),
nvinfer1::DataType::kINT32);
positionIds = manager.gpu(ITensor::makeShape({maxNumSequences * maxDecodingTokens}), nvinfer1::DataType::kINT32);
useSpecDecoding = manager.cpu(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
}
ExplicitDraftTokensBuffers::ExplicitDraftTokensBuffers(SizeType32 maxBatchSize, SizeType32 maxBeamWidth,
runtime::BufferManager const& manager, runtime::ModelConfig const& modelConfig,
runtime::WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK_WITH_INFO(maxBeamWidth == 1, "Explicit draft tokens does not support beam search");
auto const maxNumSequences = maxBatchSize;
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
auto const explicitDraftTokensModule
= std::dynamic_pointer_cast<tensorrt_llm::runtime::ExplicitDraftTokensModule const>(
modelConfig.getSpeculativeDecodingModulePtr());
auto const numBeams = explicitDraftTokensModule->getMaxNumPaths();
auto const beamDraftLength = explicitDraftTokensModule->getMaxDraftPathLen();
auto const beamLength = explicitDraftTokensModule->getMaxPathLen(); // beamDraftLength + 1
auto constexpr TRTTokenIdType = runtime::TRTDataType<runtime::TokenIdType>::value;
auto const dtype = modelConfig.getDataType();
// input tensors
engineInputs.requestTypesDevice = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineInputs.temperatures = manager.emptyTensor(runtime::MemoryType::kGPU, dtype);
engineInputs.draftTokens = manager.gpu(ITensor::makeShape({maxNumSequences, numBeams, beamLength}), TRTTokenIdType);
engineInputs.draftIndices
= manager.gpu(ITensor::makeShape({maxNumSequences, numBeams, beamLength}), nvinfer1::DataType::kINT32);
engineInputs.draftProbs
= manager.gpu(ITensor::makeShape({maxNumSequences, numBeams, beamDraftLength, vocabSizePadded}), dtype);
engineInputs.generationLengths = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineInputs.positionIds = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineInputs.positionOffsets = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineInputs.packedMasks = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineInputs.randomDataSample = manager.emptyTensor(runtime::MemoryType::kGPU, dtype);
engineInputs.randomDataValidation = manager.emptyTensor(runtime::MemoryType::kGPU, dtype);
engineInputs.positionIdsBase = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineInputs.useSpecDecoding = manager.cpu(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
bufferCast<SizeType32>(*engineInputs.useSpecDecoding)[0] = 1;
// output tensors
engineOutputs.nextDraftTokens
= manager.gpu(ITensor::makeShape({maxNumSequences, numBeams, beamLength}), TRTTokenIdType);
engineOutputs.nextDraftIndices
= manager.gpu(ITensor::makeShape({maxNumSequences, numBeams, beamLength}), nvinfer1::DataType::kINT32);
engineOutputs.nextDraftProbs
= manager.gpu(ITensor::makeShape({maxNumSequences, numBeams, beamDraftLength, vocabSizePadded}), dtype);
engineOutputs.maxGenToken = manager.gpu(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
engineOutputs.totalGenToken = manager.gpu(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
engineOutputs.nextGenerationLengths = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineOutputs.nextPositionOffsets = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineOutputs.masks = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kBOOL);
engineOutputs.nextFlatTokens = manager.emptyTensor(runtime::MemoryType::kGPU, TRTTokenIdType);
engineOutputs.bestPathLengths = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineOutputs.bestPathIndices = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
engineOutputs.packedPositionIds = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
// helper tensors
auto const& stream = manager.getStream();
scanTempStorageBytes
= tksd::invokeScanGenerationLengths(nullptr, 0, nullptr, nullptr, maxNumSequences, stream.get());
scanTempStorage = manager.gpu(scanTempStorageBytes);
cumSumGenerationLengths = manager.emptyTensor(runtime::MemoryType::kGPU, nvinfer1::DataType::kINT32);
// pre-allocate empty tensors
reshape(0, maxNumSequences, modelConfig);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void ExplicitDraftTokensBuffers::reshape(
SizeType32 numCtxSequences, SizeType32 numGenSequences, runtime::ModelConfig const& modelConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const numSequences = numCtxSequences + numGenSequences;
auto const explicitDraftTokensModule
= std::dynamic_pointer_cast<tensorrt_llm::runtime::ExplicitDraftTokensModule const>(
modelConfig.getSpeculativeDecodingModulePtr());
auto const numBeams = explicitDraftTokensModule->getMaxNumPaths();
auto const beamDraftLength = explicitDraftTokensModule->getMaxDraftPathLen();
auto const maxDecodingTokens = explicitDraftTokensModule->getMaxDecodingTokens();
// input tensors
engineInputs.requestTypesDevice->reshape(ITensor::makeShape({numSequences}));
engineInputs.temperatures->reshape(ITensor::makeShape({numSequences}));
auto draftTokensShape = engineInputs.draftTokens->getShape();
draftTokensShape.d[0] = numGenSequences;
engineInputs.draftTokens->reshape(draftTokensShape);
auto draftIndicesShape = engineInputs.draftIndices->getShape();
draftIndicesShape.d[0] = numGenSequences;
engineInputs.draftIndices->reshape(draftIndicesShape);
auto draftProbsShape = engineInputs.draftProbs->getShape();
draftProbsShape.d[0] = numGenSequences;
engineInputs.draftProbs->reshape(draftProbsShape);
engineInputs.generationLengths->reshape(ITensor::makeShape({numGenSequences}));
engineInputs.positionIds->reshape(ITensor::makeShape({numSequences * maxDecodingTokens}));
engineInputs.positionOffsets->reshape(ITensor::makeShape({numGenSequences, maxDecodingTokens}));
engineInputs.packedMasks->reshape(
ITensor::makeShape({numGenSequences * maxDecodingTokens, common::ceilDiv(maxDecodingTokens, 32)}));
engineInputs.randomDataSample->reshape(ITensor::makeShape({numSequences}));
engineInputs.randomDataValidation->reshape(ITensor::makeShape({numGenSequences, numBeams, beamDraftLength}));
engineInputs.positionIdsBase->reshape(ITensor::makeShape({numSequences}));
// output tensors
engineOutputs.nextGenerationLengths->reshape(ITensor::makeShape({numSequences}));
engineOutputs.nextPositionOffsets->reshape(ITensor::makeShape({numSequences, maxDecodingTokens}));
engineOutputs.masks->reshape(ITensor::makeShape({numSequences, maxDecodingTokens, maxDecodingTokens}));
engineOutputs.nextFlatTokens->reshape(ITensor::makeShape({numSequences * maxDecodingTokens}));
engineOutputs.bestPathLengths->reshape(ITensor::makeShape({numSequences}));
engineOutputs.bestPathIndices->reshape(ITensor::makeShape({numSequences}));
engineOutputs.packedPositionIds->reshape(ITensor::makeShape({numSequences * maxDecodingTokens}));
cumSumGenerationLengths->reshape(ITensor::makeShape({numSequences}));
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void ExplicitDraftTokensBuffers::setFromInputs(SizeType32 numCtxSequences, SizeType32 numGenSequences,
SizeType32 vocabSizePadded, ITensor const& seqSlots, ExplicitDraftTokensBuffers::Inputs const& draftBuffers,
ITensor const& contextPositionIds, runtime::ExplicitDraftTokensModule const& explicitDraftTokensModule,
runtime::CudaStream const& stream) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
using runtime::bufferCast;
tksd::PackExplicitDraftTokensParams<T> params;
params.batchSize = numCtxSequences + numGenSequences;
params.numPaths = explicitDraftTokensModule.getMaxNumPaths();
params.maxPathLength = explicitDraftTokensModule.getMaxPathLen();
params.vocabSize = vocabSizePadded;
params.numContextRequests = numCtxSequences;
params.numGenerationRequests = numGenSequences;
params.numContextTokens = contextPositionIds.getShape().d[0];
params.batchSlots = bufferCast<SizeType32>(seqSlots);
params.maxGenerationLength = bufferCast<SizeType32>(*engineOutputs.maxGenToken);
params.inputTemperatures = bufferCast<T>(*draftBuffers.temperatures);
params.inputPositionIdsBase = bufferCast<SizeType32>(*draftBuffers.positionIdsBase);
params.inputGenerationLengths = bufferCast<SizeType32>(*draftBuffers.generationLengths);
params.inputRandomDataSample = bufferCast<T>(*draftBuffers.randomDataSample);
params.inputRandomDataValidation = bufferCast<T>(*draftBuffers.randomDataValidation);
params.inputNextDraftTokens = bufferCast<runtime::TokenIdType>(*draftBuffers.draftTokens);
params.inputNextDraftIndices = bufferCast<SizeType32>(*draftBuffers.draftIndices);
params.inputDraftProbs = bufferCast<T>(*draftBuffers.draftProbs);
params.inputPackedMask = bufferCast<int32_t>(*draftBuffers.packedMasks);
params.inputPositionIds = bufferCast<SizeType32>(*draftBuffers.positionIds);
params.outputTemperatures = bufferCast<T>(*engineInputs.temperatures);
params.outputPositionIdsBase = bufferCast<SizeType32>(*engineInputs.positionIdsBase);
params.outputGenerationLengths = bufferCast<SizeType32>(*engineInputs.generationLengths);
params.outputRandomDataSample = bufferCast<T>(*engineInputs.randomDataSample);
params.outputRandomDataValidation = bufferCast<T>(*engineInputs.randomDataValidation);
params.outputNextDraftTokens = bufferCast<runtime::TokenIdType>(*engineInputs.draftTokens);
params.outputNextDraftIndices = bufferCast<SizeType32>(*engineInputs.draftIndices);
params.outputDraftProbs = bufferCast<T>(*engineInputs.draftProbs);
params.outputPackedMask = bufferCast<int32_t>(*engineInputs.packedMasks);
params.outputPositionOffsets = bufferCast<SizeType32>(*engineInputs.positionOffsets);
params.outputPositionIds = bufferCast<SizeType32>(*engineInputs.positionIds);
params.cumSumGenerationLengths = bufferCast<SizeType32>(*cumSumGenerationLengths);
params.checkParams();
// Pack tensors from batch slot position to continuous array
tksd::invokePackGenerationLengths(params, stream.get());
if (numGenSequences)
{
// Compute inclusive sum
tksd::invokeScanGenerationLengths(bufferCast<uint8_t>(*scanTempStorage), scanTempStorageBytes,
bufferCast<SizeType32>(*engineInputs.generationLengths), bufferCast<SizeType32>(*cumSumGenerationLengths),
numGenSequences, stream.get());
}
// Pack tensors from batch slot position to continuous array
tksd::invokePackExplicitDraftTokens(params, stream.get());
if (numGenSequences)
{
// Copy draft probs
tksd::invokeCopyProbs(params, stream.get());
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void ExplicitDraftTokensBuffers::setFromInputs(SizeType32 numCtxSequences, SizeType32 numGenSequences,
ITensor const& requestTypes, ITensor const& seqSlots, ExplicitDraftTokensBuffers::Inputs const& draftBuffers,
ITensor const& contextPositionIds, runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig,
runtime::BufferManager const& manager, runtime::CudaStream const& stream) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const explicitDraftTokensModule = std::dynamic_pointer_cast<runtime::ExplicitDraftTokensModule const>(
modelConfig.getSpeculativeDecodingModulePtr());
auto const seqSlotsPtr = bufferCast<SizeType32>(seqSlots);
auto const generationLengthsPtr = bufferCast<SizeType32>(*draftBuffers.generationLengthsHost);
SizeType32 totalGenLengths = 0;
for (SizeType32 si = 0; si < numGenSequences; ++si)
{
auto const slot = seqSlotsPtr[numCtxSequences + si];
totalGenLengths += generationLengthsPtr[slot];
}
// Reshape position ids.
engineInputs.positionIds->reshape(ITensor::makeShape({contextPositionIds.getShape().d[0] + totalGenLengths}));
// Copy position ids -- hacky solution to avoid filling them for the context requests.
TensorPtr posIdsSlice = ITensor::slice(engineInputs.positionIds, 0, contextPositionIds.getShape().d[0]);
manager.copy(contextPositionIds, *posIdsSlice);
manager.copy(requestTypes, *engineInputs.requestTypesDevice);
auto const numSequences = numCtxSequences + numGenSequences;
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
auto const dtype = modelConfig.getDataType();
switch (dtype)
{
case nvinfer1::DataType::kFLOAT:
setFromInputs<float>(numCtxSequences, numGenSequences, vocabSizePadded, seqSlots, draftBuffers,
contextPositionIds, *explicitDraftTokensModule, stream);
break;
case nvinfer1::DataType::kHALF:
setFromInputs<half>(numCtxSequences, numGenSequences, vocabSizePadded, seqSlots, draftBuffers,
contextPositionIds, *explicitDraftTokensModule, stream);
break;
case nvinfer1::DataType::kBF16:
setFromInputs<__nv_bfloat16>(numCtxSequences, numGenSequences, vocabSizePadded, seqSlots, draftBuffers,
contextPositionIds, *explicitDraftTokensModule, stream);
break;
default:
TLLM_THROW("DataType %d not supported in ExplicitDraftTokensBuffers", static_cast<SizeType32>(dtype));
break;
}
// reshape outputs
auto draftTokensShape = engineOutputs.nextDraftTokens->getShape();
draftTokensShape.d[0] = numSequences;
engineOutputs.nextDraftTokens->reshape(draftTokensShape);
auto draftIndicesShape = engineOutputs.nextDraftIndices->getShape();
draftIndicesShape.d[0] = numSequences;
engineOutputs.nextDraftIndices->reshape(draftIndicesShape);
auto draftProbsShape = engineOutputs.nextDraftProbs->getShape();
draftProbsShape.d[0] = numSequences;
engineOutputs.nextDraftProbs->reshape(draftProbsShape);
auto maxGenLength = bufferCast<SizeType32>(*draftBuffers.maxGenLengthHost)[0];
if (maxGenLength == 0)
{
maxGenLength = explicitDraftTokensModule->getMaxDecodingTokens();
}
auto positionOffsetsShape = engineInputs.positionOffsets->getShape();
positionOffsetsShape.d[1] = maxGenLength;
engineInputs.positionOffsets->reshape(positionOffsetsShape);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void ExplicitDraftTokensBuffers::insertInputTensors(
TensorMap& inputBuffers, TensorMap& outputBuffers, runtime::WorldConfig const& /* worldConfig */) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
// inputs
inputBuffers.insert_or_assign("redrafter_inverted_temperature", engineInputs.temperatures);
inputBuffers.insert_or_assign("device_request_types", engineInputs.requestTypesDevice);
inputBuffers.insert_or_assign("spec_decoding_generation_lengths", engineInputs.generationLengths);
inputBuffers.insert_or_assign("spec_decoding_position_offsets", engineInputs.positionOffsets);
inputBuffers.insert_or_assign("spec_decoding_packed_mask", engineInputs.packedMasks);
inputBuffers.insert_or_assign("draft_tokens", engineInputs.draftTokens);
inputBuffers.insert_or_assign("draft_indices", engineInputs.draftIndices);
inputBuffers.insert_or_assign("draft_probs", engineInputs.draftProbs);
inputBuffers.insert_or_assign("rand_data_sample", engineInputs.randomDataSample);
inputBuffers.insert_or_assign("rand_data_validation", engineInputs.randomDataValidation);
inputBuffers.insert_or_assign("position_ids_base", engineInputs.positionIdsBase);
inputBuffers.insert_or_assign("position_ids", engineInputs.positionIds);
inputBuffers.insert_or_assign("spec_decoding_use", engineInputs.useSpecDecoding);
// outputs
outputBuffers.insert_or_assign("next_spec_decoding_generation_lengths", engineOutputs.nextGenerationLengths);
outputBuffers.insert_or_assign("next_spec_decoding_position_offsets", engineOutputs.nextPositionOffsets);
outputBuffers.insert_or_assign("spec_decoding_mask", engineOutputs.masks);
outputBuffers.insert_or_assign("next_draft_tokens", engineOutputs.nextDraftTokens);
outputBuffers.insert_or_assign("next_draft_indices", engineOutputs.nextDraftIndices);
outputBuffers.insert_or_assign("next_draft_probs", engineOutputs.nextDraftProbs);
outputBuffers.insert_or_assign("next_flat_tokens", engineOutputs.nextFlatTokens);
outputBuffers.insert_or_assign("num_accepted_tokens", engineOutputs.bestPathLengths);
outputBuffers.insert_or_assign("accepted_beam_index", engineOutputs.bestPathIndices);
outputBuffers.insert_or_assign("max_gen_token", engineOutputs.maxGenToken);
outputBuffers.insert_or_assign("total_gen_token", engineOutputs.totalGenToken);
outputBuffers.insert_or_assign("packed_position_ids", engineOutputs.packedPositionIds);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
} // namespace tensorrt_llm::runtime