TensorRT-LLMs/cpp/tensorrt_llm/runtime/loraManager.cpp
Yuxian Qiu c8e062bfd3
fix: [nvbugs/5287097] Align PP layer distribution between pytorch and TRT flow. (#4399)
Signed-off-by: Yuxian Qiu <142763828+yuxianq@users.noreply.github.com>
Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com>
Co-authored-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com>
2025-05-19 14:25:36 -07:00

160 lines
6.8 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/loraManager.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/iBuffer.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/loraUtils.h"
#include "tensorrt_llm/runtime/modelConfig.h"
#include "tensorrt_llm/runtime/utils/runtimeUtils.h"
#include "tensorrt_llm/runtime/worldConfig.h"
#include <NvInferRuntime.h>
namespace tensorrt_llm::runtime
{
void LoraManager::create(ModelConfig const& modelConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto modules = modelConfig.getLoraModules();
SizeType32 modOff = 0;
for (auto const& m : modules)
{
mModuleIdToModule[m.value()] = m;
mModuleOffset[m.value()] = modOff++;
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void LoraManager::fillInputTensors(TensorPtr weightsPtrs, TensorPtr adapterSizes, PeftTable const& peftTable,
ReqIdsVec const& reqIds, std::vector<SizeType32> const& reqBeamWidth, ModelConfig const& modelConfig,
WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto batchSize = static_cast<SizeType32>(reqIds.size());
for (SizeType32 bid = 0; bid < batchSize; ++bid)
{
auto it = peftTable.find(reqIds[bid]);
if (it == peftTable.end())
{
continue;
}
auto peftValues = it->second;
fillInputTensors(weightsPtrs, adapterSizes, peftValues, bid, reqBeamWidth[bid], modelConfig, worldConfig);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void LoraManager::fillInputTensors(TensorPtr weightsPtrs, TensorPtr adapterSizes, PeftValues const& peftValues,
SizeType32 batchIdx, SizeType32 beamWidth, ModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const ppSize = worldConfig.getPipelineParallelism();
auto const ppRank = worldConfig.getPipelineParallelRank();
auto const localNumLayers = modelConfig.getNbAttentionLayers(ppSize, ppRank);
auto const firstLayerId = ppRank * localNumLayers;
auto weightsPointersPtr = bufferCast<int64_t>(*weightsPtrs);
auto adapterSizesPtr = bufferCast<int32_t>(*adapterSizes);
TLLM_CHECK(!peftValues.empty());
auto const numRows = static_cast<SizeType32>(peftValues.size());
for (SizeType32 row = 0; row < numRows; ++row)
{
auto const& peftValue = peftValues.at(row);
auto const moduleId = peftValue.moduleId;
auto const adapterSize = peftValue.adapterSize;
auto const modOff = mModuleOffset.at(moduleId);
auto const layerIdx = peftValue.layerId;
auto const inWeightsPtr = peftValue.weightsInPointer;
auto const outWeightsPtr = peftValue.weightsOutPointer;
auto const scalingVecPtr = peftValue.scalingVecPointer.value_or(0);
auto weightsPointersPtrOffset = common::flat_index4(modOff, layerIdx - firstLayerId, batchIdx, SizeType32{0},
weightsPtrs->getShape().d[1], weightsPtrs->getShape().d[2], weightsPtrs->getShape().d[3]);
auto adapterSizesPtrOffset = common::flat_index3(
modOff, layerIdx - firstLayerId, batchIdx, adapterSizes->getShape().d[1], adapterSizes->getShape().d[2]);
TLLM_CHECK_WITH_INFO(static_cast<SizeType32>(weightsPtrs->getSize())
>= weightsPointersPtrOffset + lora::kLORA_NUM_WEIGHTS_POINTERS * beamWidth,
"Coding error attempting to write lora ptrs outside range of buffer");
TLLM_CHECK_WITH_INFO(static_cast<SizeType32>(adapterSizes->getSize()) >= adapterSizesPtrOffset + beamWidth,
"Coding error attempting to write lora low ranks outside range of buffer");
auto const writeWeightsPtr = weightsPointersPtr + weightsPointersPtrOffset;
auto const writeAdapterSizesPtr = adapterSizesPtr + adapterSizesPtrOffset;
SizeType32 weightsPtrsOff = 0;
for (SizeType32 beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
{
writeWeightsPtr[weightsPtrsOff++] = inWeightsPtr;
writeWeightsPtr[weightsPtrsOff++] = outWeightsPtr;
writeWeightsPtr[weightsPtrsOff++] = scalingVecPtr;
}
std::fill_n(writeAdapterSizesPtr, beamWidth, adapterSize);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void LoraManager::insertInputTensors(TensorMap& inputTensors, TensorPtr weightsPtrs, TensorPtr adapterSizes,
ModelConfig const& modelConfig, WorldConfig const& worldConfig) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto localNbLayers
= modelConfig.getNbAttentionLayers(worldConfig.getPipelineParallelism(), worldConfig.getPipelineParallelRank());
auto firstLayerId = worldConfig.getPipelineParallelRank() * localNbLayers;
for (auto const& [modId, mod] : mModuleIdToModule)
{
auto modOff = mModuleOffset.at(modId);
TensorPtr weightPtrsModSlice = ITensor::slice(weightsPtrs, modOff, 1);
weightPtrsModSlice->squeeze(0);
TensorPtr adapterSizesModSlice = ITensor::slice(adapterSizes, modOff, 1);
adapterSizesModSlice->squeeze(0);
auto weightsPtrsFieldName = std::string(mod.name()) + "_lora_weights_pointers_";
auto lowRankFieldName = std::string(mod.name()) + "_lora_ranks_";
utils::insertTensorSlices(inputTensors, weightsPtrsFieldName, weightPtrsModSlice, firstLayerId);
utils::insertTensorSlices(inputTensors, lowRankFieldName, adapterSizesModSlice, firstLayerId);
TLLM_LOG_DEBUG("weightPtrsModSlice shape %s", ITensor::toString(weightPtrsModSlice->getShape()).c_str());
TLLM_LOG_DEBUG("adapterSizesModSlice shape %s", ITensor::toString(adapterSizesModSlice->getShape()).c_str());
TLLM_LOG_DEBUG("lora fields");
for (auto i : inputTensors)
{
auto name = i.first;
if (name.find("lora") != std::string::npos)
{
TLLM_LOG_DEBUG("%s %s", name.c_str(), ITensor::toString(i.second->getShape()).c_str());
}
}
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
} // namespace tensorrt_llm::runtime