mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* feat/vbws-part4-v1.8: rebase Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * feat/vbws-part4-v1.9: fix incorrect output when using short output length Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * v1.9.1: remove useless variables Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * v1.9.2:fix incorrect output when using short output length Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * v1.9.3: rebase Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * v1.9.4: rebase Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> * v1.9.5: remove API change Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> --------- Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> Co-authored-by: wili-65535 <wili-65535@users.noreply.github.com>
93 lines
3.5 KiB
C++
93 lines
3.5 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/runtime/promptTuningParams.h"
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
|
|
void PromptTuningParams::fillTasksTensor(TensorPtr tasksHost, SizeType32 const batchSize,
|
|
SizeType32 const numContextRequests, std::vector<SizeType32> const& reqBeamWidths,
|
|
std::vector<SizeType32> const& reqPromptLengths, BufferManager const& manager, bool packedInput)
|
|
{
|
|
auto const& tasksHostShape = tasksHost->getShape();
|
|
TLLM_CHECK_WITH_INFO(tasksHostShape.nbDims == 1, "tasksHost expected to have dimension [batchSize]");
|
|
TLLM_CHECK_WITH_INFO(tasksHostShape.d[0] == batchSize, "tasksHost expected to have dimension [batchSize]");
|
|
|
|
auto const tasksHostPtr = bufferCast<SizeType32 const>(*tasksHost);
|
|
|
|
bool validInput = packedInput || numContextRequests == batchSize || numContextRequests == 0;
|
|
TLLM_CHECK_WITH_INFO(validInput,
|
|
"fillTasksTensor function with packed inputs must be called with only context requests or only generation "
|
|
"requests.");
|
|
|
|
bool validShapes = (static_cast<SizeType32>(reqBeamWidths.size()) == batchSize
|
|
&& static_cast<SizeType32>(reqPromptLengths.size()) == numContextRequests
|
|
&& static_cast<SizeType32>(promptTuningEnabled.size()) == batchSize);
|
|
TLLM_CHECK_WITH_INFO(validShapes,
|
|
"Invalid inputs to fillTasksTensor function. reqBeamWidths and reqPtuningEnabled size must be batchSize and "
|
|
"propmtLenghts size must be numContextRequests");
|
|
|
|
SizeType32 totalInputSize = 0;
|
|
std::vector<SizeType32> promptTasksHost;
|
|
for (SizeType32 bid = 0; bid < batchSize; bid++)
|
|
{
|
|
SizeType32 taskId = promptTuningEnabled[bid] ? tasksHostPtr[bid] : 0;
|
|
if (packedInput)
|
|
{
|
|
if (bid < numContextRequests)
|
|
{
|
|
totalInputSize += reqPromptLengths[bid];
|
|
promptTasksHost.insert(promptTasksHost.end(), reqPromptLengths[bid], taskId);
|
|
}
|
|
else
|
|
{
|
|
for (SizeType32 beam = 0; beam < reqBeamWidths[bid]; ++beam)
|
|
{
|
|
promptTasksHost.insert(promptTasksHost.end(), 1, taskId);
|
|
totalInputSize++;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (bid < numContextRequests)
|
|
{
|
|
promptTasksHost.push_back(taskId);
|
|
++totalInputSize;
|
|
}
|
|
else
|
|
{
|
|
promptTasksHost.insert(promptTasksHost.end(), reqBeamWidths[bid], taskId);
|
|
totalInputSize += reqBeamWidths[bid];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (packedInput)
|
|
{
|
|
tasks = manager.copyFrom(
|
|
promptTasksHost, runtime::ITensor::makeShape({totalInputSize}), runtime::MemoryType::kGPU);
|
|
}
|
|
else
|
|
{
|
|
tasks = manager.copyFrom(
|
|
promptTasksHost, runtime::ITensor::makeShape({totalInputSize, 1}), runtime::MemoryType::kGPU);
|
|
}
|
|
}
|
|
|
|
} // namespace tensorrt_llm::runtime
|