mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
91 lines
3.8 KiB
C++
91 lines
3.8 KiB
C++
/*
|
|
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/kernels/speculativeDecoding/explicitDraftTokensKernels.h"
|
|
#include "tensorrt_llm/thop/thUtils.h"
|
|
|
|
namespace th = torch;
|
|
|
|
TRTLLM_NAMESPACE_BEGIN
|
|
|
|
namespace torch_ext
|
|
{
|
|
void convertSpecDecodingMaskToPackedMask(torch::Tensor specDecodingGenerationLengthsTensor,
|
|
torch::Tensor specDecodingMaskTensor, int64_t maxSpecDecodingTokens, torch::Tensor specDecodingPackedMaskTensor,
|
|
torch::optional<int64_t> stream_ptr = torch::nullopt)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(
|
|
at::cuda::is_available(), "convert_spec_decoding_mask_to_packed_mask should be called with cuda enabled.");
|
|
cudaStream_t stream;
|
|
if (stream_ptr.has_value())
|
|
{
|
|
stream = reinterpret_cast<cudaStream_t>(stream_ptr.value());
|
|
}
|
|
else
|
|
{
|
|
stream = at::cuda::getCurrentCUDAStream();
|
|
}
|
|
TLLM_CHECK_WITH_INFO(specDecodingGenerationLengthsTensor.dim() == 1
|
|
&& specDecodingGenerationLengthsTensor.scalar_type() == torch::kInt,
|
|
"spec_decoding_generation_lengths tensor should be 1D int tensor.");
|
|
|
|
TLLM_CHECK_WITH_INFO(specDecodingMaskTensor.dim() == 3 && specDecodingMaskTensor.scalar_type() == torch::kBool,
|
|
"spec_decoding_mask tensor should be 3D bool tensor.");
|
|
|
|
TLLM_CHECK_WITH_INFO(
|
|
specDecodingPackedMaskTensor.dim() == 2 && specDecodingPackedMaskTensor.scalar_type() == torch::kInt,
|
|
"spec_decoding_packed_mask tensor should be 2D int tensor.");
|
|
|
|
int batchSize = specDecodingGenerationLengthsTensor.size(0);
|
|
|
|
int64_t scanReduceTempMemoryBytes = tensorrt_llm::kernels::speculative_decoding::invokeScanReduceGenerationLengths(
|
|
batchSize, nullptr, nullptr, 0, nullptr, nullptr, stream);
|
|
|
|
torch::Tensor scanReduceTempMemoryStorage = torch::empty(
|
|
{
|
|
scanReduceTempMemoryBytes,
|
|
},
|
|
torch::dtype(torch::kInt8).device(torch::kCUDA).requires_grad(false));
|
|
torch::Tensor scanedSpecDecodingGenerationLengths = torch::empty(
|
|
{
|
|
batchSize,
|
|
},
|
|
torch::dtype(torch::kInt).device(torch::kCUDA).requires_grad(false));
|
|
torch::Tensor maxSpecDecodingGenerationLengths = torch::empty(
|
|
{
|
|
1,
|
|
},
|
|
torch::dtype(torch::kInt).device(torch::kCUDA).requires_grad(false));
|
|
|
|
tensorrt_llm::kernels::speculative_decoding::invokeScanReduceGenerationLengths(batchSize,
|
|
specDecodingGenerationLengthsTensor.data_ptr<int>(),
|
|
reinterpret_cast<void*>(scanReduceTempMemoryStorage.data_ptr<int8_t>()), scanReduceTempMemoryBytes,
|
|
scanedSpecDecodingGenerationLengths.data_ptr<int>(), maxSpecDecodingGenerationLengths.data_ptr<int>(), stream);
|
|
|
|
tensorrt_llm::kernels::speculative_decoding::invokeConvertMaskToPackedMask(batchSize,
|
|
scanedSpecDecodingGenerationLengths.data_ptr<int>(), maxSpecDecodingGenerationLengths.data_ptr<int>(),
|
|
specDecodingMaskTensor.data_ptr<bool>(), nullptr, maxSpecDecodingTokens, maxSpecDecodingTokens + 1,
|
|
specDecodingPackedMaskTensor.data_ptr<int>(), stream);
|
|
}
|
|
|
|
} // namespace torch_ext
|
|
|
|
TRTLLM_NAMESPACE_END
|
|
|
|
static auto convert_spec_decoding_mask_to_packed_mask
|
|
= torch::RegisterOperators("tensorrt_llm::convert_spec_decoding_mask_to_packed_mask",
|
|
&tensorrt_llm::torch_ext::convertSpecDecodingMaskToPackedMask);
|