TensorRT-LLMs/cpp/tensorrt_llm/thop/fp8PerTensorScalingTrtllmGenGemm.cpp
Yihan Wang 9df4dad3b6
[None][fix] Introduce inline namespace to avoid symbol collision (#9541)
Signed-off-by: Yihan Wang <yihwang@nvidia.com>
2025-12-12 23:32:15 +08:00

179 lines
7.2 KiB
C++

/*
* Copyright (c) 2020-2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/kernels/multiHeadAttentionCommon.h"
#include "tensorrt_llm/kernels/trtllmGenKernels/gemm/KernelRunner.h"
#include "tensorrt_llm/kernels/trtllmGenKernels/gemmGatedAct/KernelRunner.h"
#include "tensorrt_llm/thop/thUtils.h"
#include <ATen/cuda/EmptyTensor.h>
#include <ATen/native/cuda/Resize.h>
#include <cuda_fp16.h>
#include <cstdint>
TRTLLM_NAMESPACE_BEGIN
namespace torch_ext
{
namespace
{
template <gemm::trtllm::gen::Dtype outDtype>
void runGemm(at::Tensor& out, at::Tensor const& mat1, at::Tensor const& mat2, at::Tensor const& globalScale, int64_t m,
int64_t n, int64_t k, bool lowLatencyKernel)
{
auto eltType = gemm::trtllm::gen::Dtype::E4m3;
tensorrt_llm::kernels::TrtllmGenGemmRunnerOptions options
= {.eltTypeA = eltType, .outputType = outDtype, .deepSeekFp8 = false, .transposeMmaOutput = lowLatencyKernel};
tensorrt_llm::kernels::TrtllmGenGemmRunner runner(options);
int64_t const numBytesWorkspace = runner.getWorkspaceSizeInBytes(m, n, k);
at::Tensor workspace
= at::detail::empty_cuda({numBytesWorkspace}, at::ScalarType::Char, torch::kCUDA, std::nullopt);
auto stream = at::cuda::getCurrentCUDAStream(mat1.get_device());
float* outScalePtr = globalScale.data_ptr<float>();
runner.run(m, n, k, mat1.const_data_ptr(), mat2.const_data_ptr(), out.data_ptr(), outScalePtr, workspace.data_ptr(),
stream.stream(), mat1.get_device());
}
template <gemmGatedAct::trtllm::gen::Dtype outDtype>
void runGemmGatedAct(at::Tensor& out, at::Tensor const& mat1, at::Tensor const& mat2, at::Tensor const& globalScale,
at::Tensor const& globalScaleGate, int64_t m, int64_t n, int64_t k, bool lowLatencyKernel)
{
auto eltType = gemmGatedAct::trtllm::gen::Dtype::E4m3;
tensorrt_llm::kernels::TrtllmGenGemmGatedActRunnerOptions options
= {.eltType = eltType, .outputType = outDtype, .deepSeekFp8 = false, .transposeMmaOutput = lowLatencyKernel};
tensorrt_llm::kernels::TrtllmGenGemmGatedActRunner runner(options);
int64_t const numBytesWorkspace = runner.getWorkspaceSizeInBytes(m, n, k);
at::Tensor workspace
= at::detail::empty_cuda({numBytesWorkspace}, at::ScalarType::Char, torch::kCUDA, std::nullopt);
auto stream = at::cuda::getCurrentCUDAStream(mat1.get_device());
float* outScalePtr = globalScale.data_ptr<float>();
float* outScaleGatePtr = globalScaleGate.data_ptr<float>();
runner.run(m, n, k, mat1.const_data_ptr(), mat2.const_data_ptr(), out.data_ptr(), outScalePtr, outScaleGatePtr,
workspace.data_ptr(), stream.stream(), mat1.get_device());
}
torch::Tensor fp8_per_tensor_scaling_tllmg_gemm_impl(torch::Tensor const& mat1, torch::Tensor const& mat2,
torch::Tensor const& globalScale, std::optional<c10::ScalarType> outDtype,
std::optional<torch::Tensor> globalScaleGate, bool lowLatencyKernel, bool gatedSilu)
{
TORCH_CHECK(mat1.scalar_type() == at::ScalarType::Float8_e4m3fn,
"Matrix1 dtype must be FP8 (the matrix will be dequantized on the fly).");
TORCH_CHECK(mat2.scalar_type() == at::ScalarType::Float8_e4m3fn,
"Matrix2 dtype must be FP8 (the matrix will be dequantized on the fly).");
TORCH_CHECK(globalScale.scalar_type() == at::ScalarType::Float, "globalScale must be float.");
TORCH_CHECK(mat1.dim() == 2, "mat1 must be a matrix");
TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix");
TORCH_CHECK(mat1.sizes()[1] == mat2.sizes()[1], "mat1 and mat2 shapes cannot be multiplied (", mat1.sizes()[0], "x",
mat1.sizes()[1], " and ", mat2.sizes()[0], "x", mat2.sizes()[1], ")");
auto const m = mat1.sizes()[0];
auto const n = mat2.sizes()[0];
auto const k = mat1.sizes()[1];
if (!outDtype)
{
outDtype = torch::kHalf;
}
TORCH_CHECK(outDtype == at::ScalarType::Float8_e4m3fn || outDtype == torch::kHalf || outDtype == torch::kBFloat16,
"outDtype must be one of fp16/bf16/e4m3. It defaults to fp16.");
int32_t outHiddenDim = n;
if (gatedSilu)
{
TORCH_CHECK(globalScaleGate.has_value(), "globalScaleGate must be provided for gatedSilu.");
outHiddenDim = n / 2;
}
at::Tensor out = at::detail::empty_cuda({m, outHiddenDim}, outDtype.value(), mat1.device(), std::nullopt);
if (gatedSilu)
{
switch (outDtype.value())
{
case at::ScalarType::Half:
runGemmGatedAct<gemmGatedAct::trtllm::gen::Dtype::Fp16>(
out, mat1, mat2, globalScale, globalScaleGate.value(), m, n, k, lowLatencyKernel);
break;
case at::ScalarType::BFloat16:
runGemmGatedAct<gemmGatedAct::trtllm::gen::Dtype::Bfloat16>(
out, mat1, mat2, globalScale, globalScaleGate.value(), m, n, k, lowLatencyKernel);
break;
case at::ScalarType::Float8_e4m3fn:
runGemmGatedAct<gemmGatedAct::trtllm::gen::Dtype::E4m3>(
out, mat1, mat2, globalScale, globalScaleGate.value(), m, n, k, lowLatencyKernel);
break;
default: C10_THROW_ERROR(NotImplementedError, "outDtype must be one of fp16/bf16/e4m3.");
}
}
else
{
switch (outDtype.value())
{
case at::ScalarType::Half:
runGemm<gemm::trtllm::gen::Dtype::Fp16>(out, mat1, mat2, globalScale, m, n, k, lowLatencyKernel);
break;
case at::ScalarType::BFloat16:
runGemm<gemm::trtllm::gen::Dtype::Bfloat16>(out, mat1, mat2, globalScale, m, n, k, lowLatencyKernel);
break;
case at::ScalarType::Float8_e4m3fn:
runGemm<gemm::trtllm::gen::Dtype::E4m3>(out, mat1, mat2, globalScale, m, n, k, lowLatencyKernel);
break;
default: C10_THROW_ERROR(NotImplementedError, "outDtype must be one of fp16/bf16/e4m3.");
}
}
return out;
}
} // namespace
torch::Tensor fp8_per_tensor_scaling_tllmg_gemm(torch::Tensor const& mat1, torch::Tensor const& mat2,
torch::Tensor const& globalScale, std::optional<c10::ScalarType> outDtype,
std::optional<torch::Tensor> globalScaleGate, bool lowLatencyKernel, bool gatedSilu)
{
return fp8_per_tensor_scaling_tllmg_gemm_impl(
mat1, mat2, globalScale, outDtype, globalScaleGate, lowLatencyKernel, gatedSilu);
}
} // namespace torch_ext
TRTLLM_NAMESPACE_END
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def(
"fp8_per_tensor_scaling_tllmg_gemm(Tensor mat1, Tensor mat2, Tensor global_scale, ScalarType? out_dtype=None, "
"Tensor? global_scale_gate=None, bool low_latency_kernel=False, bool gated_silu=False) -> Tensor");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("fp8_per_tensor_scaling_tllmg_gemm", &tensorrt_llm::torch_ext::fp8_per_tensor_scaling_tllmg_gemm);
}