mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
201 lines
7.8 KiB
C++
201 lines
7.8 KiB
C++
|
|
/*
|
|
* Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/cublasMMWrapper.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/opUtils.h"
|
|
#include "tensorrt_llm/kernels/lora/lora.h"
|
|
#include "tensorrt_llm/kernels/selectiveScan/selectiveScan.h"
|
|
#include "tensorrt_llm/thop/thUtils.h"
|
|
|
|
namespace th = torch;
|
|
namespace tk = tensorrt_llm::kernels;
|
|
using tensorrt_llm::common::fmtstr;
|
|
|
|
TRTLLM_NAMESPACE_BEGIN
|
|
|
|
namespace torch_ext
|
|
{
|
|
|
|
enum class RequestType : int32_t
|
|
{
|
|
kCONTEXT = 0,
|
|
kGENERATION = 1
|
|
};
|
|
|
|
int64_t getNumTokens(th::Tensor const& input)
|
|
{
|
|
int ndim = input.sizes().size();
|
|
TLLM_CHECK_WITH_INFO(
|
|
3 == ndim || 2 == ndim, "hidden_state dimension should be either 2 [numTokens, hidden], or 3 [b, s, hidden]");
|
|
int64_t num_tokens = input.sizes()[0];
|
|
if (ndim == 3)
|
|
{
|
|
num_tokens *= input.sizes()[1];
|
|
}
|
|
return num_tokens;
|
|
}
|
|
|
|
std::vector<th::Tensor> lora_grouped_gemm(th::Tensor const& input, th::Tensor const& host_request_types,
|
|
std::vector<th::Tensor> const& lora_ranks, // numModules tensors, each tensors has single value
|
|
std::vector<th::Tensor> const& lora_weights_pointers, th::Tensor const& host_context_lengths,
|
|
std::vector<int64_t> const& output_hidden_sizes, bool transA, bool transB, int64_t const max_low_rank,
|
|
int64_t const& weight_index, bool isRemoveInputPadding)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
|
auto const numReqs = lora_ranks[0].sizes()[0];
|
|
auto const out_shape = input.sizes();
|
|
int const numLoraModules = lora_ranks.size();
|
|
TLLM_CHECK_WITH_INFO(lora_ranks.size() == lora_weights_pointers.size(), "both should be numLoraModules");
|
|
std::vector<th::Tensor> output_torch;
|
|
for (int i = 0; i < numLoraModules; i++)
|
|
{
|
|
std::vector<int64_t> output_shape = {out_shape[0], output_hidden_sizes[i]};
|
|
if (!isRemoveInputPadding)
|
|
{
|
|
output_shape = {out_shape[0], out_shape[1], output_hidden_sizes[i]};
|
|
}
|
|
output_torch.push_back(torch::empty(output_shape, input.options()));
|
|
}
|
|
std::vector<void*> output;
|
|
for (auto tensor_it = output_torch.begin(); tensor_it != output_torch.end(); tensor_it++)
|
|
{
|
|
output.push_back(tensor_it->data_ptr());
|
|
}
|
|
int const seqLen = isRemoveInputPadding ? 0 : input.sizes()[1];
|
|
int32_t const* reqTypes = static_cast<int32_t const*>(host_request_types.data_ptr());
|
|
int32_t const* hostContextLengths
|
|
= isRemoveInputPadding ? static_cast<int32_t const*>(host_context_lengths.data_ptr()) : nullptr;
|
|
|
|
int64_t numTokens = getNumTokens(input);
|
|
|
|
std::vector<void const*> expandLoraWeightPtrs{};
|
|
std::vector<int32_t> expandLoraRanks{};
|
|
|
|
expandLoraWeightPtrs.reserve(numLoraModules * numTokens * 2);
|
|
expandLoraRanks.reserve(numLoraModules * numTokens);
|
|
|
|
for (int loraModuleIdx = 0; loraModuleIdx < numLoraModules; loraModuleIdx++)
|
|
{
|
|
auto const loraRankModule = static_cast<int32_t const*>(lora_ranks[loraModuleIdx].data_ptr());
|
|
auto const loraWeightModulePtrs = static_cast<int64_t const*>(lora_weights_pointers[loraModuleIdx].data_ptr());
|
|
|
|
int idx = 0;
|
|
for (int reqId = 0; reqId < numReqs; reqId++)
|
|
{
|
|
// loraWeightModulePtrs has 3 pointers for each module: A,B, and an optional DoRA magnitude
|
|
// the current LoRA plugin does not apply DoRA scaling, so the magnitude is ignored
|
|
RequestType const reqType = static_cast<RequestType const>(reqTypes[reqId]);
|
|
if (reqType == RequestType::kGENERATION)
|
|
{
|
|
expandLoraWeightPtrs.push_back(reinterpret_cast<void const*>(loraWeightModulePtrs[reqId * 3]));
|
|
expandLoraWeightPtrs.push_back(reinterpret_cast<void const*>(loraWeightModulePtrs[reqId * 3 + 1]));
|
|
expandLoraRanks.push_back(loraRankModule[reqId]);
|
|
idx += 1;
|
|
}
|
|
else
|
|
{
|
|
int contextLen = (isRemoveInputPadding ? hostContextLengths[reqId] : seqLen);
|
|
|
|
for (int contextId = 0; contextId < contextLen; contextId++)
|
|
{
|
|
expandLoraWeightPtrs.push_back(reinterpret_cast<void const*>(loraWeightModulePtrs[reqId * 3]));
|
|
expandLoraWeightPtrs.push_back(reinterpret_cast<void const*>(loraWeightModulePtrs[reqId * 3 + 1]));
|
|
expandLoraRanks.push_back(loraRankModule[reqId]);
|
|
idx += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// In 1st generation phase cross attention qkv lora, cross qkv is skipped by passing an empty encoder_output
|
|
// (passing 0 to dim) getNumTokens() will get in cross qkv_lora. Skipping the check for this case.
|
|
if (numTokens > 0)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(idx == numTokens,
|
|
fmtstr("LoraParams and input dims don't match, lora tokens %d input tokens %ld", idx, numTokens));
|
|
}
|
|
}
|
|
|
|
thread_local std::shared_ptr<tensorrt_llm::common::CublasMMWrapper> cublasWrapper;
|
|
if (cublasWrapper == nullptr)
|
|
{
|
|
auto cublasHandle = getCublasHandle();
|
|
auto cublasLtHandle = getCublasLtHandle();
|
|
cublasWrapper
|
|
= std::make_shared<tensorrt_llm::common::CublasMMWrapper>(cublasHandle, cublasLtHandle, nullptr, nullptr);
|
|
}
|
|
|
|
int const inHiddenSize = input.sizes()[input.sizes().size() - 1];
|
|
|
|
std::vector<int> outHiddenSizes(output_hidden_sizes.size());
|
|
for (int i = 0; i < numLoraModules; i++)
|
|
{
|
|
outHiddenSizes[i] = output_hidden_sizes[i];
|
|
}
|
|
nvinfer1::DataType loraRuntimeDataType;
|
|
switch (input.scalar_type())
|
|
{
|
|
case torch::kFloat16: loraRuntimeDataType = nvinfer1::DataType::kHALF; break;
|
|
case torch::kBFloat16: loraRuntimeDataType = nvinfer1::DataType::kBF16; break;
|
|
default: throw std::invalid_argument("Invalid dtype, only supports float16, bfloat16");
|
|
}
|
|
|
|
auto mLoraImpl = std::make_shared<tensorrt_llm::kernels::LoraImpl>(
|
|
inHiddenSize, outHiddenSizes, transA, transB, numLoraModules, loraRuntimeDataType, max_low_rank, cublasWrapper);
|
|
|
|
// TODO (dafrimi): use Profiler to find the best tactic as used in lora_plugin
|
|
mLoraImpl->setBestTactic(std::nullopt);
|
|
|
|
auto const workspace_size = mLoraImpl->getWorkspaceSize(numTokens, numReqs, loraRuntimeDataType);
|
|
|
|
auto workspace = torch::empty(std::vector<int64_t>{static_cast<int64_t>(workspace_size)}, input.options());
|
|
|
|
mLoraImpl->run(numTokens, numReqs, input.data_ptr(), expandLoraRanks.data(), expandLoraWeightPtrs.data(),
|
|
weight_index, output.data(), workspace.data_ptr(), stream);
|
|
sync_check_cuda_error(stream);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
return output_torch;
|
|
}
|
|
|
|
} // namespace torch_ext
|
|
|
|
TRTLLM_NAMESPACE_END
|
|
|
|
TORCH_LIBRARY_FRAGMENT(trtllm, m)
|
|
{
|
|
m.def(
|
|
"lora_grouped_gemm(Tensor input, "
|
|
"Tensor host_request_types, "
|
|
"Tensor [] lora_ranks, "
|
|
"Tensor [] lora_weights_pointers, "
|
|
"Tensor host_context_lengths, "
|
|
"int [] output_hidden_sizes, "
|
|
"bool transA, "
|
|
"bool transB, "
|
|
"int max_low_rank, "
|
|
"int weight_index, "
|
|
"bool isRemoveInputPadding) -> Tensor[]");
|
|
}
|
|
|
|
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
|
|
{
|
|
m.impl("lora_grouped_gemm", &tensorrt_llm::torch_ext::lora_grouped_gemm);
|
|
}
|