TensorRT-LLMs/cpp/tensorrt_llm/thop/noAuxTcOp.cpp
Yihan Wang 9df4dad3b6
[None][fix] Introduce inline namespace to avoid symbol collision (#9541)
Signed-off-by: Yihan Wang <yihwang@nvidia.com>
2025-12-12 23:32:15 +08:00

175 lines
8.2 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/opUtils.h"
#include "tensorrt_llm/runtime/torchUtils.h"
#include "tensorrt_llm/kernels/noAuxTcKernels.h"
// #include <NvInferRuntime.h>
// #include <c10/cuda/CUDAStream.h>
// #include <cassert>
// #include <set>
// #include <string>
// #include <torch/extension.h>
// #include <vector>
namespace th = torch;
namespace tl = tensorrt_llm;
namespace tk = tensorrt_llm::kernels;
TRTLLM_NAMESPACE_BEGIN
namespace torch_ext
{
std::tuple<at::Tensor, at::Tensor> noaux_tc_op(th::Tensor const& scores, th::Tensor const& bias, int64_t n_group,
int64_t topk_group, int64_t topk, double routed_scaling_factor)
{
auto data_type = scores.scalar_type();
auto bias_type = bias.scalar_type();
auto input_size = scores.sizes();
int64_t num_tokens = input_size[0];
int64_t num_experts = input_size[1];
TORCH_CHECK(input_size.size() == 2, "scores must be a 2D Tensor");
TORCH_CHECK(scores.is_cuda() && bias.is_cuda(), "scores and bias must be CUDA tensors");
TORCH_CHECK(scores.get_device() == bias.get_device(), "scores and bias must be on the same device");
TORCH_CHECK(bias.dim() == 1 && bias.numel() == num_experts,
"bias must be 1D with length == number of experts (%ld)", num_experts);
TORCH_CHECK(num_experts % n_group == 0, "num_experts should be divisible by n_group");
TORCH_CHECK(
n_group <= 32, "n_group should be smaller than or equal to 32 for now"); //@todo: remove this restriction later
TORCH_CHECK(
topk <= 32, "topk should be smaller than or equal to 32 for now"); //@todo: remove this restriction later
th::Tensor topk_values = th::empty({num_tokens, topk}, th::dtype(data_type).device(torch::kCUDA));
th::Tensor topk_indices = th::empty({num_tokens, topk}, th::dtype(torch::kInt32).device(torch::kCUDA));
//@TODO check the data type of indices
auto stream = at::cuda::getCurrentCUDAStream(scores.get_device());
switch (data_type)
{
case torch::kFloat16:
// Handle Float16
switch (bias_type)
{
case torch::kFloat16:
tk::invokeNoAuxTc<half, half, half, int32_t>(reinterpret_cast<half*>(scores.mutable_data_ptr()),
reinterpret_cast<half*>(bias.mutable_data_ptr()),
reinterpret_cast<half*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, n_group,
topk_group, topk, routed_scaling_factor, stream);
break;
case torch::kFloat32:
tk::invokeNoAuxTc<half, float, half, int32_t>(reinterpret_cast<half*>(scores.mutable_data_ptr()),
reinterpret_cast<float*>(bias.mutable_data_ptr()),
reinterpret_cast<half*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, n_group,
topk_group, topk, routed_scaling_factor, stream);
break;
case torch::kBFloat16:
tk::invokeNoAuxTc<half, __nv_bfloat16, half, int32_t>(reinterpret_cast<half*>(scores.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(bias.mutable_data_ptr()),
reinterpret_cast<half*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, n_group,
topk_group, topk, routed_scaling_factor, stream);
default: throw std::invalid_argument("Invalid bias dtype, only supports float16, float32, and bfloat16"); break;
}
break;
case torch::kFloat32:
switch (bias_type)
{
case torch::kFloat32:
tk::invokeNoAuxTc<float, float, float, int32_t>(reinterpret_cast<float*>(scores.mutable_data_ptr()),
reinterpret_cast<float*>(bias.mutable_data_ptr()),
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, n_group,
topk_group, topk, routed_scaling_factor, stream);
break;
case torch::kFloat16:
tk::invokeNoAuxTc<float, half, float, int32_t>(reinterpret_cast<float*>(scores.mutable_data_ptr()),
reinterpret_cast<half*>(bias.mutable_data_ptr()),
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, n_group,
topk_group, topk, routed_scaling_factor, stream);
break;
case torch::kBFloat16:
tk::invokeNoAuxTc<float, __nv_bfloat16, float, int32_t>(reinterpret_cast<float*>(scores.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(bias.mutable_data_ptr()),
reinterpret_cast<float*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, n_group,
topk_group, topk, routed_scaling_factor, stream);
break;
default: throw std::invalid_argument("Invalid bias dtype, only supports float16, float32, and bfloat16"); break;
}
break;
case torch::kBFloat16:
// Handle BFloat16
switch (bias_type)
{
case torch::kBFloat16:
tk::invokeNoAuxTc<__nv_bfloat16, __nv_bfloat16, __nv_bfloat16, int32_t>(
reinterpret_cast<__nv_bfloat16*>(scores.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(bias.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, n_group,
topk_group, topk, routed_scaling_factor, stream);
break;
case torch::kFloat16:
tk::invokeNoAuxTc<__nv_bfloat16, half, __nv_bfloat16, int32_t>(
reinterpret_cast<__nv_bfloat16*>(scores.mutable_data_ptr()),
reinterpret_cast<half*>(bias.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, n_group,
topk_group, topk, routed_scaling_factor, stream);
break;
case torch::kFloat32:
tk::invokeNoAuxTc<__nv_bfloat16, float, __nv_bfloat16, int32_t>(
reinterpret_cast<__nv_bfloat16*>(scores.mutable_data_ptr()),
reinterpret_cast<float*>(bias.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(topk_values.mutable_data_ptr()),
reinterpret_cast<int32_t*>(topk_indices.mutable_data_ptr()), num_tokens, num_experts, n_group,
topk_group, topk, routed_scaling_factor, stream);
break;
default: throw std::invalid_argument("Invalid bias dtype, only supports bfloat16, float16, and float32"); break;
}
break;
default:
// Handle other data types
throw std::invalid_argument("Invalid dtype, only supports float16, float32, and bfloat16");
break;
}
return {topk_values, topk_indices};
}
} // end namespace torch_ext
TRTLLM_NAMESPACE_END
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def(
"noaux_tc_op(Tensor scores, Tensor bias, int n_group, int topk_group, int topk, float "
"routed_scaling_factor) -> (Tensor, Tensor)");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("noaux_tc_op", &tensorrt_llm::torch_ext::noaux_tc_op);
}