TensorRT-LLMs/cpp/tensorrt_llm/thop/redrafterCurandOp.cpp
Yihan Wang 9df4dad3b6
[None][fix] Introduce inline namespace to avoid symbol collision (#9541)
Signed-off-by: Yihan Wang <yihwang@nvidia.com>
2025-12-12 23:32:15 +08:00

172 lines
6.6 KiB
C++

/*
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/kernels/speculativeDecoding/explicitDraftTokensKernels.h"
#include "tensorrt_llm/layers/defaultDecodingParams.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/thop/thUtils.h"
#if ENABLE_BF16
#include <cuda_bf16.h>
#endif // ENABLE_BF16
#include <c10/core/Device.h>
#include <c10/core/DeviceType.h>
#include <cstdint>
namespace th = torch;
namespace tr = tensorrt_llm::runtime;
namespace tk = tensorrt_llm::kernels;
namespace tksd = tensorrt_llm::kernels::speculative_decoding;
TRTLLM_NAMESPACE_BEGIN
namespace torch_ext
{
namespace
{
// Must be similar to ExplicitDraftTokensLayer<T>::setup
void initializeDeviceCurandStates(
int64_t batchSize, th::Tensor& curandState, th::optional<th::Tensor>& randomSeeds, cudaStream_t stream)
{
auto* curandStatePtr = get_ptr<curandState_t>(curandState);
tr::SizeType32* batchSlotsPtr = nullptr;
if (randomSeeds.has_value())
{
if (batchSize > 1 && randomSeeds->size(0) == 1)
{
TLLM_CHECK_WITH_INFO(randomSeeds->device().is_cpu(), "Random seed tensor expected on host.");
auto const randomSeed = get_val<uint64_t>(randomSeeds.value(), 0);
tk::invokeCurandInitialize(curandStatePtr, batchSlotsPtr, batchSize, randomSeed, stream);
}
else
{
TLLM_CHECK_WITH_INFO(
randomSeeds->dim() == 1 && randomSeeds->size(0) == batchSize, "Random seed tensor size mismatch.");
TLLM_CHECK_WITH_INFO(randomSeeds->device().is_cuda(), "Random seed tensor expected on device.");
auto* randomSeedsPtr = get_ptr<uint64_t>(randomSeeds.value());
tk::invokeCurandBatchInitialize(curandStatePtr, batchSlotsPtr, batchSize, randomSeedsPtr, stream);
}
}
else
{
// Initialize curand states using the default seed 0.
tk::invokeCurandInitialize(
curandStatePtr, batchSlotsPtr, batchSize, tensorrt_llm::layers::DefaultDecodingParams::getSeed(), stream);
}
sync_check_cuda_error(stream);
}
} // namespace
void prepareRandomTensors(th::Tensor& curandState, // [maxBatchSize, 48], uint8_t
th::Tensor& randDataSample, // [maxBatchSize], dtype (float or half)
th::Tensor& randDataValidation, // [maxBatchSize, maxNumPaths, maxPathDraftLength], dtype (float or half)
th::optional<th::Tensor> randomSeeds, // [1] or [maxBatchSize], uint64_t
int64_t const batchSize, //
int64_t const numPaths, //
int64_t const draftLength, //
bool const initialize //
)
{
auto stream = at::cuda::getCurrentCUDAStream().stream();
auto const scalarType = randDataSample.scalar_type();
CHECK_TYPE(randDataValidation, scalarType);
TLLM_CHECK_WITH_INFO(
randDataSample.dim() == 1 && randDataSample.size(0) == batchSize, "Random sample tensor size mismatch.");
TLLM_CHECK_WITH_INFO(randDataValidation.dim() == 3 && randDataValidation.size(0) == batchSize
&& randDataValidation.size(1) == numPaths && randDataValidation.size(2) == draftLength,
"Random validation tensor size mismatch.");
TLLM_CHECK_WITH_INFO(
curandState.dim() == 2 && curandState.size(0) == batchSize && curandState.size(1) == sizeof(curandState_t),
"Curand state tensor shpe mismatch."
"(got (%lu, %lu), need (%lu, %lu)).",
curandState.size(0), curandState.size(1), batchSize, sizeof(curandState_t));
if (initialize)
{
initializeDeviceCurandStates(batchSize, curandState, randomSeeds, stream);
}
switch (scalarType)
{
case at::ScalarType::Float:
{
tksd::FillRandDataExplicitDraftTokensParams<float> params;
params.batchSize = static_cast<tr::SizeType32>(batchSize);
params.numPaths = static_cast<tr::SizeType32>(numPaths);
params.draftLength = static_cast<tr::SizeType32>(draftLength);
params.randDataSample = get_ptr<float>(randDataSample);
params.randDataVerification = get_ptr<float>(randDataValidation);
params.curandState = get_ptr<curandState_t>(curandState);
params.batchSlots = nullptr;
params.skipVerification = initialize;
tksd::invokeFillRandData(params, stream);
}
break;
case at::ScalarType::Half:
{
tksd::FillRandDataExplicitDraftTokensParams<half> params;
params.batchSize = static_cast<tr::SizeType32>(batchSize);
params.numPaths = static_cast<tr::SizeType32>(numPaths);
params.draftLength = static_cast<tr::SizeType32>(draftLength);
params.randDataSample = get_ptr<half>(randDataSample);
params.randDataVerification = get_ptr<half>(randDataValidation);
params.curandState = get_ptr<curandState_t>(curandState);
params.batchSlots = nullptr;
params.skipVerification = initialize;
tksd::invokeFillRandData(params, stream);
}
break;
#ifdef ENABLE_BF16
case at::ScalarType::BFloat16:
{
tksd::FillRandDataExplicitDraftTokensParams<__nv_bfloat16> params;
params.batchSize = static_cast<tr::SizeType32>(batchSize);
params.numPaths = static_cast<tr::SizeType32>(numPaths);
params.draftLength = static_cast<tr::SizeType32>(draftLength);
params.randDataSample = get_ptr<__nv_bfloat16>(randDataSample);
params.randDataVerification = get_ptr<__nv_bfloat16>(randDataValidation);
params.curandState = get_ptr<curandState_t>(curandState);
params.batchSlots = nullptr;
params.skipVerification = initialize;
tksd::invokeFillRandData(params, stream);
}
break;
#endif // ENABLE_BF16
default: throw std::runtime_error("Unsupported tensor type.");
}
sync_check_cuda_error(stream);
}
} // namespace torch_ext
TRTLLM_NAMESPACE_END
static auto redrafter_prepare_random_tensors = torch::RegisterOperators(
"tensorrt_llm::redrafter_prepare_random_tensors", &tensorrt_llm::torch_ext::prepareRandomTensors);