TensorRT-LLMs/cpp/tests/resources/scripts/build_eagle_engines.py
Robin Kobus 403370af62
refactor: Move ModelSpec to core library (#3980)
* refactor: Move ModelSpec from tests to core library

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Move ModelSpec from runtime to separatedir

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Use new bindings path and clean up

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* chore: Updated licenses

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* chore: Remove script_dir from path

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

---------

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-05-04 01:39:09 +08:00

144 lines
5.1 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
import pathlib as _pl
import platform as _pf
import sys as _sys
from build_engines_utils import run_command, wincopy
import tensorrt_llm.bindings as _tb
from tensorrt_llm.bindings.internal.testing import ModelSpec
def build_engine(base_model_dir: _pl.Path, eagle_model_dir: _pl.Path,
engine_dir: _pl.Path, build_base_model: bool, *args):
if build_base_model:
checkpoint_path = "examples/models/core/llama/convert_checkpoint.py"
else:
checkpoint_path = "examples/eagle/convert_checkpoint.py"
covert_cmd = [_sys.executable, checkpoint_path] + (
['--model_dir', str(base_model_dir)] if base_model_dir else []) + [
'--output_dir', str(engine_dir), '--dtype=float16'
] + list(args)
if not build_base_model:
covert_cmd += [
'--eagle_model_dir',
str(eagle_model_dir), '--num_eagle_layers=4', '--max_draft_len=63'
]
run_command(covert_cmd)
build_args = ["trtllm-build"] + (
['--checkpoint_dir', str(engine_dir)] if engine_dir else []) + [
'--output_dir',
str(engine_dir),
'--gemm_plugin=float16',
'--max_batch_size=8',
'--max_input_len=12',
'--max_seq_len=140',
'--log_level=error',
'--paged_kv_cache=enable',
'--remove_input_padding=enable',
'--use_paged_context_fmha=enable',
]
if not build_base_model:
build_args += ['--speculative_decoding_mode=eagle']
run_command(build_args)
def build_engines(model_cache: str):
resources_dir = _pl.Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
model_name = 'vicuna-7b-eagle'
base_model_name = 'vicuna-7b-v1.3'
eagle_model_name = 'EAGLE-Vicuna-7B-v1.3'
if model_cache:
print(f"Copy model from {model_cache}")
base_model_cache_dir = _pl.Path(model_cache) / base_model_name
eagle_cache_dir = _pl.Path(model_cache) / eagle_model_name
assert base_model_cache_dir.is_dir(), base_model_cache_dir
assert eagle_cache_dir.is_dir(), eagle_cache_dir
if _pf.system() == "Windows":
wincopy(source=str(base_model_cache_dir),
dest=base_model_name,
isdir=True,
cwd=models_dir)
wincopy(source=str(eagle_cache_dir),
dest=eagle_model_name,
isdir=True,
cwd=models_dir)
else:
run_command(["rsync", "-rlptD",
str(base_model_cache_dir), "."],
cwd=models_dir)
run_command(["rsync", "-rlptD",
str(eagle_cache_dir), "."],
cwd=models_dir)
base_model_dir = models_dir / base_model_name
eagle_model_dir = models_dir / eagle_model_name
assert base_model_dir.is_dir()
assert eagle_model_dir.is_dir()
eagle_engine_dir = models_dir / 'rt_engine' / model_name
base_engine_dir = models_dir / 'rt_engine' / base_model_name
model_spec_obj = ModelSpec('input_tokens.npy', _tb.DataType.HALF)
model_spec_obj.use_gpt_plugin()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
model_spec_obj.use_packed_input()
base_full_engine_path = base_engine_dir / model_spec_obj.get_model_path(
) / 'tp1-pp1-cp1-gpu'
print(f"\nBuilding fp16 engine at {str(base_full_engine_path)}")
build_engine(base_model_dir,
eagle_model_dir,
base_full_engine_path,
build_base_model=True)
model_spec_obj = ModelSpec('input_tokens.npy', _tb.DataType.HALF)
model_spec_obj.use_gpt_plugin()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
model_spec_obj.use_packed_input()
model_spec_obj.use_eagle()
eagle_full_engine_path = eagle_engine_dir / model_spec_obj.get_model_path(
) / 'tp1-pp1-cp1-gpu'
print(f"\nBuilding fp16 engine at {str(eagle_full_engine_path)}")
build_engine(base_model_dir,
eagle_model_dir,
eagle_full_engine_path,
build_base_model=False)
print("Done.")
if __name__ == "__main__":
parser = _arg.ArgumentParser()
parser.add_argument("--model_cache",
type=str,
help="Directory where models are stored")
build_engines(**vars(parser.parse_args()))