mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* refactor: Move ModelSpec from tests to core library Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * refactor: Move ModelSpec from runtime to separatedir Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * refactor: Use new bindings path and clean up Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * chore: Updated licenses Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * chore: Remove script_dir from path Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> --------- Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
127 lines
4.3 KiB
Python
Executable File
127 lines
4.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
|
|
# isort: off
|
|
import run
|
|
# isort: on
|
|
|
|
import tensorrt_llm.bindings as _tb
|
|
from tensorrt_llm.bindings.internal.testing import ModelSpec
|
|
|
|
resources_dir = Path(__file__).parent.resolve().parent
|
|
model_path = resources_dir / "models"
|
|
|
|
|
|
def generate_output(
|
|
model_name: str = "",
|
|
num_beams: int = 1,
|
|
max_output_len: int = 8,
|
|
output_logits: bool = False,
|
|
output_cum_log_probs: bool = False,
|
|
output_log_probs: bool = False,
|
|
):
|
|
hf_path = model_path / model_name
|
|
tp_size = 1
|
|
pp_size = 1
|
|
cp_size = 1
|
|
tp_pp_cp_dir = f"tp{tp_size}-pp{pp_size}-cp{cp_size}-gpu/"
|
|
input_file = f"input_tokens_{model_name}.npy"
|
|
|
|
data_input_file_name = resources_dir / "data" / input_file
|
|
if num_beams == 1:
|
|
output_dir = resources_dir / "data" / model_name / "sampling"
|
|
else:
|
|
output_dir = resources_dir / "data" / model_name / f"beam_search_{num_beams}"
|
|
output_dir.mkdir(exist_ok=True, parents=True)
|
|
|
|
model_spec_obj_list = [
|
|
ModelSpec(input_file,
|
|
_tb.DataType.HALF).use_gpt_plugin().set_kv_cache_type(
|
|
_tb.KVCacheType.CONTINUOUS),
|
|
ModelSpec(input_file, _tb.DataType.HALF).use_gpt_plugin().
|
|
use_packed_input().set_kv_cache_type(_tb.KVCacheType.PAGED),
|
|
]
|
|
|
|
for model_spec_obj in model_spec_obj_list:
|
|
engine_dir = model_path / 'rt_engine' / model_name / model_spec_obj.get_model_path(
|
|
) / tp_pp_cp_dir
|
|
base_output_name = os.path.splitext(
|
|
model_spec_obj.get_results_file())[0]
|
|
output_npy_file_name = output_dir / f'{base_output_name}.npy'
|
|
output_csv_file_name = output_dir / f'{base_output_name}.csv'
|
|
|
|
args_list = [
|
|
'--engine_dir',
|
|
str(engine_dir),
|
|
'--tokenizer_dir',
|
|
str(hf_path),
|
|
'--input_file',
|
|
str(data_input_file_name),
|
|
'--output_npy',
|
|
str(output_npy_file_name),
|
|
'--output_csv',
|
|
str(output_csv_file_name),
|
|
'--max_output_len',
|
|
str(max_output_len),
|
|
'--num_beams',
|
|
str(num_beams),
|
|
'--use_py_session',
|
|
]
|
|
|
|
if output_logits:
|
|
file_name = str(output_npy_file_name)[:-4] + "_logits.npy"
|
|
args_list.extend(['--output_logits_npy', file_name])
|
|
|
|
if output_cum_log_probs:
|
|
file_name = str(output_npy_file_name)[:-4] + "_cum_log_probs.npy"
|
|
args_list.extend(['--output_cum_log_probs_npy', file_name])
|
|
|
|
if output_log_probs:
|
|
file_name = str(output_npy_file_name)[:-4] + "_log_probs.npy"
|
|
args_list.extend(['--output_log_probs_npy', file_name])
|
|
|
|
args = run.parse_arguments(args_list)
|
|
run.main(args)
|
|
|
|
# Convert pad_id to end_id in .npy out put file
|
|
data = np.load(str(output_npy_file_name))
|
|
if model_name == 'chatglm-6b':
|
|
data[data == 3] = 130005
|
|
elif model_name == 'chatglm2-6b' or model_name == 'chatglm3-6b':
|
|
data[data == 0] = 2
|
|
elif model_name == 'glm-10b':
|
|
data[data == 50256] = 50258
|
|
else:
|
|
raise NameError('bad model name')
|
|
|
|
np.save(str(output_npy_file_name), data)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
generate_output(model_name='chatglm-6b', num_beams=1)
|
|
generate_output(model_name='chatglm-6b', num_beams=2)
|
|
generate_output(model_name='chatglm2-6b', num_beams=1)
|
|
generate_output(model_name='chatglm2-6b', num_beams=2)
|
|
generate_output(model_name='chatglm3-6b', num_beams=1)
|
|
generate_output(model_name='chatglm3-6b', num_beams=2)
|
|
generate_output(model_name='glm-10b', num_beams=1)
|
|
print("Done")
|