TensorRT-LLMs/cpp/tests/resources/scripts/generate_expected_chatglm_output.py
Robin Kobus 403370af62
refactor: Move ModelSpec to core library (#3980)
* refactor: Move ModelSpec from tests to core library

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Move ModelSpec from runtime to separatedir

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Use new bindings path and clean up

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* chore: Updated licenses

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* chore: Remove script_dir from path

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

---------

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-05-04 01:39:09 +08:00

127 lines
4.3 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
import numpy as np
# isort: off
import run
# isort: on
import tensorrt_llm.bindings as _tb
from tensorrt_llm.bindings.internal.testing import ModelSpec
resources_dir = Path(__file__).parent.resolve().parent
model_path = resources_dir / "models"
def generate_output(
model_name: str = "",
num_beams: int = 1,
max_output_len: int = 8,
output_logits: bool = False,
output_cum_log_probs: bool = False,
output_log_probs: bool = False,
):
hf_path = model_path / model_name
tp_size = 1
pp_size = 1
cp_size = 1
tp_pp_cp_dir = f"tp{tp_size}-pp{pp_size}-cp{cp_size}-gpu/"
input_file = f"input_tokens_{model_name}.npy"
data_input_file_name = resources_dir / "data" / input_file
if num_beams == 1:
output_dir = resources_dir / "data" / model_name / "sampling"
else:
output_dir = resources_dir / "data" / model_name / f"beam_search_{num_beams}"
output_dir.mkdir(exist_ok=True, parents=True)
model_spec_obj_list = [
ModelSpec(input_file,
_tb.DataType.HALF).use_gpt_plugin().set_kv_cache_type(
_tb.KVCacheType.CONTINUOUS),
ModelSpec(input_file, _tb.DataType.HALF).use_gpt_plugin().
use_packed_input().set_kv_cache_type(_tb.KVCacheType.PAGED),
]
for model_spec_obj in model_spec_obj_list:
engine_dir = model_path / 'rt_engine' / model_name / model_spec_obj.get_model_path(
) / tp_pp_cp_dir
base_output_name = os.path.splitext(
model_spec_obj.get_results_file())[0]
output_npy_file_name = output_dir / f'{base_output_name}.npy'
output_csv_file_name = output_dir / f'{base_output_name}.csv'
args_list = [
'--engine_dir',
str(engine_dir),
'--tokenizer_dir',
str(hf_path),
'--input_file',
str(data_input_file_name),
'--output_npy',
str(output_npy_file_name),
'--output_csv',
str(output_csv_file_name),
'--max_output_len',
str(max_output_len),
'--num_beams',
str(num_beams),
'--use_py_session',
]
if output_logits:
file_name = str(output_npy_file_name)[:-4] + "_logits.npy"
args_list.extend(['--output_logits_npy', file_name])
if output_cum_log_probs:
file_name = str(output_npy_file_name)[:-4] + "_cum_log_probs.npy"
args_list.extend(['--output_cum_log_probs_npy', file_name])
if output_log_probs:
file_name = str(output_npy_file_name)[:-4] + "_log_probs.npy"
args_list.extend(['--output_log_probs_npy', file_name])
args = run.parse_arguments(args_list)
run.main(args)
# Convert pad_id to end_id in .npy out put file
data = np.load(str(output_npy_file_name))
if model_name == 'chatglm-6b':
data[data == 3] = 130005
elif model_name == 'chatglm2-6b' or model_name == 'chatglm3-6b':
data[data == 0] = 2
elif model_name == 'glm-10b':
data[data == 50256] = 50258
else:
raise NameError('bad model name')
np.save(str(output_npy_file_name), data)
if __name__ == '__main__':
generate_output(model_name='chatglm-6b', num_beams=1)
generate_output(model_name='chatglm-6b', num_beams=2)
generate_output(model_name='chatglm2-6b', num_beams=1)
generate_output(model_name='chatglm2-6b', num_beams=2)
generate_output(model_name='chatglm3-6b', num_beams=1)
generate_output(model_name='chatglm3-6b', num_beams=2)
generate_output(model_name='glm-10b', num_beams=1)
print("Done")