TensorRT-LLMs/cpp/tests/resources/scripts/generate_expected_gpt_output.py
Robin Kobus 4cd8543d8c
[TRTLLM-1316] refactor: Remove unnecessary pipeline parallelism logic from postProcessRequest (#5489)
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-07-02 10:13:31 +02:00

192 lines
7.2 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
# isort: off
import run
# isort: on
import os
import shutil
import tensorrt_llm.bindings as _tb
from tensorrt_llm.bindings.internal.testing import ModelSpec, QuantMethod
def get_model_data_dir():
resources_dir = Path(__file__).parent.resolve().parent
data_dir = resources_dir / 'data'
return data_dir / 'gpt2'
def generate_output(engine: str,
num_beams: int,
input_name: str,
model_spec_obj: ModelSpec,
max_output_len: int = 8,
output_logits: bool = False,
output_cum_log_probs: bool = False,
output_log_probs: bool = False):
tp_size = 1
pp_size = 1
cp_size = 1
model = 'gpt2'
resources_dir = Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
tp_pp_cp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-cp' + str(
cp_size) + '-gpu/'
engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_cp_dir
data_dir = resources_dir / 'data'
input_file = data_dir / input_name
model_data_dir = get_model_data_dir()
if num_beams <= 1:
output_dir = model_data_dir / 'sampling'
else:
output_dir = model_data_dir / ('beam_search_' + str(num_beams))
model_spec_obj.use_tensor_parallelism(tp_size).use_pipeline_parallelism(
pp_size).use_context_parallelism(cp_size)
base_output_name = os.path.splitext(model_spec_obj.get_results_file())[0]
args_list = [
f'--engine_dir={engine_dir}',
f'--input_file={input_file}',
f'--tokenizer_dir={models_dir / model}',
f'--output_npy={output_dir / (base_output_name + ".npy")}',
f'--output_csv={output_dir / (base_output_name + ".csv")}',
f'--max_output_len={max_output_len}',
f'--num_beams={num_beams}',
'--use_py_session',
]
if output_logits:
args_list.extend([
f'--output_logits_npy={output_dir / (base_output_name + "_logits.npy")}',
'--output_generation_logits',
])
# Generate context_fmha_fp32_acc enabled results for GptExecutorTest.GenerationLogitsEarlyStop
if model_spec_obj.get_enable_context_fmha_fp32_acc():
args_list.extend(["--enable_context_fmha_fp32_acc"])
if output_cum_log_probs:
args_list.extend([
f'--output_cum_log_probs_npy={output_dir / model_spec_obj.get_cum_log_probs_file()}'
])
if output_log_probs:
args_list.extend([
f'--output_log_probs_npy={output_dir / model_spec_obj.get_log_probs_file()}'
])
args = run.parse_arguments(args_list)
run.main(args)
def generate_outputs(num_beams):
input_name = 'input_tokens.npy'
input_name_long = 'input_tokens_long.npy'
print('Generating GPT2 FP16 outputs')
model_spec_obj = ModelSpec(input_name, _tb.DataType.HALF)
model_spec_obj.use_gpt_plugin()
model_spec_obj.use_packed_input()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
model_spec_obj.gather_logits()
generate_output(engine=model_spec_obj.get_model_path(),
num_beams=num_beams,
input_name=input_name,
model_spec_obj=model_spec_obj,
output_logits=True,
output_log_probs=True,
output_cum_log_probs=True)
# GptExecutorTest.GenerationLogitsEarlyStop and several tests require to use context_fmha_fp32_acc flag in runtime
model_spec_obj.enable_context_fmha_fp32_acc()
generate_output(engine=model_spec_obj.get_model_path(),
num_beams=num_beams,
input_name=input_name,
model_spec_obj=model_spec_obj,
output_logits=True,
output_log_probs=True,
output_cum_log_probs=True)
model_spec_obj = ModelSpec(input_name, _tb.DataType.HALF)
model_spec_obj.use_gpt_plugin()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
model_spec_obj.use_packed_input()
generate_output(engine=model_spec_obj.get_model_path(),
num_beams=num_beams,
input_name=input_name,
model_spec_obj=model_spec_obj,
output_logits=False,
output_log_probs=True,
output_cum_log_probs=True)
model_spec_obj.enable_context_fmha_fp32_acc()
generate_output(engine=model_spec_obj.get_model_path(),
num_beams=num_beams,
input_name=input_name,
model_spec_obj=model_spec_obj,
output_logits=False,
output_log_probs=True,
output_cum_log_probs=True)
model_spec_obj.set_max_output_length(128)
generate_output(engine=model_spec_obj.get_model_path(),
num_beams=num_beams,
input_name=input_name,
model_spec_obj=model_spec_obj,
output_logits=False,
max_output_len=128)
model_spec_obj = ModelSpec(input_name_long, _tb.DataType.HALF)
model_spec_obj.use_gpt_plugin()
model_spec_obj.use_packed_input()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
generate_output(engine=model_spec_obj.get_model_path(),
num_beams=num_beams,
input_name=input_name_long,
model_spec_obj=model_spec_obj,
output_logits=False)
model_spec_obj = ModelSpec(input_name, _tb.DataType.HALF)
model_spec_obj.use_gpt_plugin()
model_spec_obj.use_packed_input()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
model_spec_obj.set_quant_method(QuantMethod.SMOOTH_QUANT)
generate_output(engine=model_spec_obj.get_model_path(),
num_beams=num_beams,
input_name=input_name,
model_spec_obj=model_spec_obj,
output_logits=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--clean',
action='store_true',
default=False,
help='Clean target folders before building engines')
args = parser.parse_args()
if args.clean:
model_data_dir = get_model_data_dir()
print(f'Cleaning target folder {model_data_dir}')
shutil.rmtree(model_data_dir, ignore_errors=True)
generate_outputs(num_beams=1)
generate_outputs(num_beams=2)