mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
192 lines
7.2 KiB
Python
Executable File
192 lines
7.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
# isort: off
|
|
import run
|
|
# isort: on
|
|
|
|
import os
|
|
import shutil
|
|
|
|
import tensorrt_llm.bindings as _tb
|
|
from tensorrt_llm.bindings.internal.testing import ModelSpec, QuantMethod
|
|
|
|
|
|
def get_model_data_dir():
|
|
resources_dir = Path(__file__).parent.resolve().parent
|
|
data_dir = resources_dir / 'data'
|
|
return data_dir / 'gpt2'
|
|
|
|
|
|
def generate_output(engine: str,
|
|
num_beams: int,
|
|
input_name: str,
|
|
model_spec_obj: ModelSpec,
|
|
max_output_len: int = 8,
|
|
output_logits: bool = False,
|
|
output_cum_log_probs: bool = False,
|
|
output_log_probs: bool = False):
|
|
tp_size = 1
|
|
pp_size = 1
|
|
cp_size = 1
|
|
model = 'gpt2'
|
|
resources_dir = Path(__file__).parent.resolve().parent
|
|
models_dir = resources_dir / 'models'
|
|
tp_pp_cp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-cp' + str(
|
|
cp_size) + '-gpu/'
|
|
engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_cp_dir
|
|
|
|
data_dir = resources_dir / 'data'
|
|
input_file = data_dir / input_name
|
|
model_data_dir = get_model_data_dir()
|
|
if num_beams <= 1:
|
|
output_dir = model_data_dir / 'sampling'
|
|
else:
|
|
output_dir = model_data_dir / ('beam_search_' + str(num_beams))
|
|
|
|
model_spec_obj.use_tensor_parallelism(tp_size).use_pipeline_parallelism(
|
|
pp_size).use_context_parallelism(cp_size)
|
|
|
|
base_output_name = os.path.splitext(model_spec_obj.get_results_file())[0]
|
|
|
|
args_list = [
|
|
f'--engine_dir={engine_dir}',
|
|
f'--input_file={input_file}',
|
|
f'--tokenizer_dir={models_dir / model}',
|
|
f'--output_npy={output_dir / (base_output_name + ".npy")}',
|
|
f'--output_csv={output_dir / (base_output_name + ".csv")}',
|
|
f'--max_output_len={max_output_len}',
|
|
f'--num_beams={num_beams}',
|
|
'--use_py_session',
|
|
]
|
|
|
|
if output_logits:
|
|
args_list.extend([
|
|
f'--output_logits_npy={output_dir / (base_output_name + "_logits.npy")}',
|
|
'--output_generation_logits',
|
|
])
|
|
|
|
# Generate context_fmha_fp32_acc enabled results for GptExecutorTest.GenerationLogitsEarlyStop
|
|
if model_spec_obj.get_enable_context_fmha_fp32_acc():
|
|
args_list.extend(["--enable_context_fmha_fp32_acc"])
|
|
|
|
if output_cum_log_probs:
|
|
args_list.extend([
|
|
f'--output_cum_log_probs_npy={output_dir / model_spec_obj.get_cum_log_probs_file()}'
|
|
])
|
|
|
|
if output_log_probs:
|
|
args_list.extend([
|
|
f'--output_log_probs_npy={output_dir / model_spec_obj.get_log_probs_file()}'
|
|
])
|
|
|
|
args = run.parse_arguments(args_list)
|
|
run.main(args)
|
|
|
|
|
|
def generate_outputs(num_beams):
|
|
input_name = 'input_tokens.npy'
|
|
input_name_long = 'input_tokens_long.npy'
|
|
|
|
print('Generating GPT2 FP16 outputs')
|
|
model_spec_obj = ModelSpec(input_name, _tb.DataType.HALF)
|
|
model_spec_obj.use_gpt_plugin()
|
|
model_spec_obj.use_packed_input()
|
|
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
|
|
model_spec_obj.gather_logits()
|
|
generate_output(engine=model_spec_obj.get_model_path(),
|
|
num_beams=num_beams,
|
|
input_name=input_name,
|
|
model_spec_obj=model_spec_obj,
|
|
output_logits=True,
|
|
output_log_probs=True,
|
|
output_cum_log_probs=True)
|
|
# GptExecutorTest.GenerationLogitsEarlyStop and several tests require to use context_fmha_fp32_acc flag in runtime
|
|
model_spec_obj.enable_context_fmha_fp32_acc()
|
|
generate_output(engine=model_spec_obj.get_model_path(),
|
|
num_beams=num_beams,
|
|
input_name=input_name,
|
|
model_spec_obj=model_spec_obj,
|
|
output_logits=True,
|
|
output_log_probs=True,
|
|
output_cum_log_probs=True)
|
|
|
|
model_spec_obj = ModelSpec(input_name, _tb.DataType.HALF)
|
|
model_spec_obj.use_gpt_plugin()
|
|
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
|
|
model_spec_obj.use_packed_input()
|
|
generate_output(engine=model_spec_obj.get_model_path(),
|
|
num_beams=num_beams,
|
|
input_name=input_name,
|
|
model_spec_obj=model_spec_obj,
|
|
output_logits=False,
|
|
output_log_probs=True,
|
|
output_cum_log_probs=True)
|
|
model_spec_obj.enable_context_fmha_fp32_acc()
|
|
generate_output(engine=model_spec_obj.get_model_path(),
|
|
num_beams=num_beams,
|
|
input_name=input_name,
|
|
model_spec_obj=model_spec_obj,
|
|
output_logits=False,
|
|
output_log_probs=True,
|
|
output_cum_log_probs=True)
|
|
model_spec_obj.set_max_output_length(128)
|
|
generate_output(engine=model_spec_obj.get_model_path(),
|
|
num_beams=num_beams,
|
|
input_name=input_name,
|
|
model_spec_obj=model_spec_obj,
|
|
output_logits=False,
|
|
max_output_len=128)
|
|
|
|
model_spec_obj = ModelSpec(input_name_long, _tb.DataType.HALF)
|
|
model_spec_obj.use_gpt_plugin()
|
|
model_spec_obj.use_packed_input()
|
|
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
|
|
generate_output(engine=model_spec_obj.get_model_path(),
|
|
num_beams=num_beams,
|
|
input_name=input_name_long,
|
|
model_spec_obj=model_spec_obj,
|
|
output_logits=False)
|
|
|
|
model_spec_obj = ModelSpec(input_name, _tb.DataType.HALF)
|
|
model_spec_obj.use_gpt_plugin()
|
|
model_spec_obj.use_packed_input()
|
|
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
|
|
model_spec_obj.set_quant_method(QuantMethod.SMOOTH_QUANT)
|
|
generate_output(engine=model_spec_obj.get_model_path(),
|
|
num_beams=num_beams,
|
|
input_name=input_name,
|
|
model_spec_obj=model_spec_obj,
|
|
output_logits=False)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--clean',
|
|
action='store_true',
|
|
default=False,
|
|
help='Clean target folders before building engines')
|
|
args = parser.parse_args()
|
|
if args.clean:
|
|
model_data_dir = get_model_data_dir()
|
|
print(f'Cleaning target folder {model_data_dir}')
|
|
shutil.rmtree(model_data_dir, ignore_errors=True)
|
|
generate_outputs(num_beams=1)
|
|
generate_outputs(num_beams=2)
|