mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
152 lines
5.2 KiB
Python
152 lines
5.2 KiB
Python
#!/usr/bin/env python3
|
|
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse as _arg
|
|
import os
|
|
import time
|
|
from pathlib import Path
|
|
|
|
from mpi4py.MPI import COMM_WORLD
|
|
|
|
# isort: off
|
|
import run
|
|
# isort: on
|
|
|
|
import tensorrt_llm.bindings as _tb
|
|
from tensorrt_llm.bindings.internal.testing import ModelSpec
|
|
|
|
|
|
def generate_output(engine: str,
|
|
num_beams: int,
|
|
model_spec_obj: ModelSpec,
|
|
tp_size: int = 1,
|
|
pp_size: int = 1,
|
|
cp_size: int = 1,
|
|
max_output_len: int = 8,
|
|
output_logits: bool = False,
|
|
output_cum_log_probs: bool = False,
|
|
output_log_probs: bool = False):
|
|
|
|
model = 'Llama-3.2-1B'
|
|
resources_dir = Path(__file__).parent.resolve().parent
|
|
models_dir = resources_dir / 'models'
|
|
tp_pp_cp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-cp' + str(
|
|
cp_size) + '-gpu/'
|
|
engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_cp_dir
|
|
|
|
data_dir = resources_dir / 'data'
|
|
input_file = data_dir / 'input_tokens_llama.npy'
|
|
model_data_dir = data_dir / model
|
|
if num_beams <= 1:
|
|
output_dir = model_data_dir / 'sampling'
|
|
else:
|
|
output_dir = model_data_dir / ('beam_search_' + str(num_beams))
|
|
|
|
base_output_name = os.path.splitext(model_spec_obj.get_results_file())[0]
|
|
|
|
args_list = [
|
|
f'--engine_dir={engine_dir}',
|
|
f'--input_file={input_file}',
|
|
f'--tokenizer_dir={models_dir / model}',
|
|
f'--output_npy={output_dir / (base_output_name + ".npy")}',
|
|
f'--output_csv={output_dir / (base_output_name + ".csv")}',
|
|
f'--max_output_len={max_output_len}',
|
|
f'--num_beams={num_beams}',
|
|
'--use_py_session',
|
|
]
|
|
|
|
if output_logits:
|
|
args_list.extend([
|
|
f'--output_logits_npy={output_dir / (base_output_name + "_logits.npy")}',
|
|
'--output_generation_logits',
|
|
])
|
|
|
|
if output_cum_log_probs:
|
|
args_list.extend([
|
|
f'--output_cum_log_probs_npy={output_dir / model_spec_obj.get_cum_log_probs_file()}'
|
|
])
|
|
|
|
if output_log_probs:
|
|
args_list.extend([
|
|
f'--output_log_probs_npy={output_dir / model_spec_obj.get_log_probs_file()}'
|
|
])
|
|
|
|
args = run.parse_arguments(args_list)
|
|
run.main(args)
|
|
|
|
|
|
def generate_outputs(num_beams, only_multi_gpu=False):
|
|
if not only_multi_gpu:
|
|
tp_pp_cp_sizes = [(1, 1, 1)]
|
|
elif COMM_WORLD.size == 4:
|
|
tp_pp_cp_sizes = [(4, 1, 1), (2, 2, 1), (1, 4, 1)]
|
|
elif COMM_WORLD.size == 2:
|
|
tp_pp_cp_sizes = [(1, 2, 1), (2, 1, 1)]
|
|
else:
|
|
raise RuntimeError(
|
|
f"The world size of MPI {COMM_WORLD.size} is not equal to 1, 2, or 4."
|
|
)
|
|
model_spec_obj = ModelSpec('input_tokens_llama.npy', _tb.DataType.HALF)
|
|
model_spec_obj.use_gpt_plugin()
|
|
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
|
|
model_spec_obj.use_packed_input()
|
|
|
|
for tp_size, pp_size, cp_size in tp_pp_cp_sizes:
|
|
print(
|
|
f'Generating outputs for Llama FP16 with TP={tp_size}, PP={pp_size}, CP={cp_size}, BW={num_beams}'
|
|
)
|
|
start_time = time.time()
|
|
|
|
output_logits = False
|
|
output_log_probs = False
|
|
output_cum_log_probs = False
|
|
if tp_size == 4 and pp_size == 1:
|
|
output_logits = True
|
|
output_log_probs = True
|
|
output_cum_log_probs = True
|
|
|
|
model_spec_obj.use_tensor_parallelism(tp_size)
|
|
model_spec_obj.use_pipeline_parallelism(pp_size)
|
|
model_spec_obj.use_context_parallelism(cp_size)
|
|
generate_output(engine=model_spec_obj.get_model_path(),
|
|
num_beams=num_beams,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size,
|
|
cp_size=cp_size,
|
|
model_spec_obj=model_spec_obj,
|
|
output_logits=output_logits,
|
|
output_log_probs=output_log_probs,
|
|
output_cum_log_probs=output_cum_log_probs)
|
|
|
|
duration = time.time() - start_time
|
|
print(
|
|
f"Generating outputs for Llama FP16 with TP={tp_size}, PP={pp_size}, CP={cp_size}, BW={num_beams} took {duration} seconds"
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = _arg.ArgumentParser()
|
|
parser.add_argument(
|
|
"--only_multi_gpu",
|
|
action="store_true",
|
|
help="Generate data with Pipeline and Tensor Parallelism")
|
|
|
|
args = parser.parse_args()
|
|
|
|
generate_outputs(num_beams=1, only_multi_gpu=args.only_multi_gpu)
|
|
generate_outputs(num_beams=2, only_multi_gpu=args.only_multi_gpu)
|
|
print("Done")
|