TensorRT-LLMs/cpp/tests/resources/scripts/generate_expected_llama_output.py
Robin Kobus 4cd8543d8c
[TRTLLM-1316] refactor: Remove unnecessary pipeline parallelism logic from postProcessRequest (#5489)
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-07-02 10:13:31 +02:00

152 lines
5.2 KiB
Python

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
import os
import time
from pathlib import Path
from mpi4py.MPI import COMM_WORLD
# isort: off
import run
# isort: on
import tensorrt_llm.bindings as _tb
from tensorrt_llm.bindings.internal.testing import ModelSpec
def generate_output(engine: str,
num_beams: int,
model_spec_obj: ModelSpec,
tp_size: int = 1,
pp_size: int = 1,
cp_size: int = 1,
max_output_len: int = 8,
output_logits: bool = False,
output_cum_log_probs: bool = False,
output_log_probs: bool = False):
model = 'Llama-3.2-1B'
resources_dir = Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
tp_pp_cp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-cp' + str(
cp_size) + '-gpu/'
engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_cp_dir
data_dir = resources_dir / 'data'
input_file = data_dir / 'input_tokens_llama.npy'
model_data_dir = data_dir / model
if num_beams <= 1:
output_dir = model_data_dir / 'sampling'
else:
output_dir = model_data_dir / ('beam_search_' + str(num_beams))
base_output_name = os.path.splitext(model_spec_obj.get_results_file())[0]
args_list = [
f'--engine_dir={engine_dir}',
f'--input_file={input_file}',
f'--tokenizer_dir={models_dir / model}',
f'--output_npy={output_dir / (base_output_name + ".npy")}',
f'--output_csv={output_dir / (base_output_name + ".csv")}',
f'--max_output_len={max_output_len}',
f'--num_beams={num_beams}',
'--use_py_session',
]
if output_logits:
args_list.extend([
f'--output_logits_npy={output_dir / (base_output_name + "_logits.npy")}',
'--output_generation_logits',
])
if output_cum_log_probs:
args_list.extend([
f'--output_cum_log_probs_npy={output_dir / model_spec_obj.get_cum_log_probs_file()}'
])
if output_log_probs:
args_list.extend([
f'--output_log_probs_npy={output_dir / model_spec_obj.get_log_probs_file()}'
])
args = run.parse_arguments(args_list)
run.main(args)
def generate_outputs(num_beams, only_multi_gpu=False):
if not only_multi_gpu:
tp_pp_cp_sizes = [(1, 1, 1)]
elif COMM_WORLD.size == 4:
tp_pp_cp_sizes = [(4, 1, 1), (2, 2, 1), (1, 4, 1)]
elif COMM_WORLD.size == 2:
tp_pp_cp_sizes = [(1, 2, 1), (2, 1, 1)]
else:
raise RuntimeError(
f"The world size of MPI {COMM_WORLD.size} is not equal to 1, 2, or 4."
)
model_spec_obj = ModelSpec('input_tokens_llama.npy', _tb.DataType.HALF)
model_spec_obj.use_gpt_plugin()
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
model_spec_obj.use_packed_input()
for tp_size, pp_size, cp_size in tp_pp_cp_sizes:
print(
f'Generating outputs for Llama FP16 with TP={tp_size}, PP={pp_size}, CP={cp_size}, BW={num_beams}'
)
start_time = time.time()
output_logits = False
output_log_probs = False
output_cum_log_probs = False
if tp_size == 4 and pp_size == 1:
output_logits = True
output_log_probs = True
output_cum_log_probs = True
model_spec_obj.use_tensor_parallelism(tp_size)
model_spec_obj.use_pipeline_parallelism(pp_size)
model_spec_obj.use_context_parallelism(cp_size)
generate_output(engine=model_spec_obj.get_model_path(),
num_beams=num_beams,
tp_size=tp_size,
pp_size=pp_size,
cp_size=cp_size,
model_spec_obj=model_spec_obj,
output_logits=output_logits,
output_log_probs=output_log_probs,
output_cum_log_probs=output_cum_log_probs)
duration = time.time() - start_time
print(
f"Generating outputs for Llama FP16 with TP={tp_size}, PP={pp_size}, CP={cp_size}, BW={num_beams} took {duration} seconds"
)
if __name__ == '__main__':
parser = _arg.ArgumentParser()
parser.add_argument(
"--only_multi_gpu",
action="store_true",
help="Generate data with Pipeline and Tensor Parallelism")
args = parser.parse_args()
generate_outputs(num_beams=1, only_multi_gpu=args.only_multi_gpu)
generate_outputs(num_beams=2, only_multi_gpu=args.only_multi_gpu)
print("Done")