TensorRT-LLMs/cpp/tests/unit_tests/common/cudaUtilsTest.cpp
tburt-nv 7a659885e3
chore: remove usernames from comments (#3291)
Signed-off-by: Tyler Burt <195370667+tburt-nv@users.noreply.github.com>
2025-04-05 13:44:28 +08:00

55 lines
2.7 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <memory>
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/runtime/tllmBuffers.h"
namespace tc = tensorrt_llm::common;
namespace tr = tensorrt_llm::runtime;
TEST(TestGetPtrCudaMemoryType, TestMemoryTypesAreAsExpected)
{
auto const cpuBuffer = std::make_unique<tr::HostBuffer>(1024, tr::TRTDataType<float>::value);
// Note: this I think will change with hardware HMM support. To be confirmed. If it does, check for this
// support and change expected memory type value accordingly.
ASSERT_EQ(tc::getPtrCudaMemoryType(cpuBuffer->data()), cudaMemoryType::cudaMemoryTypeUnregistered)
<< "Host paged memory should appear as unregistered to CUDA.";
auto const pinnedCpuBuffer = std::make_unique<tr::PinnedBuffer>(1024, tr::TRTDataType<float>::value);
ASSERT_EQ(tc::getPtrCudaMemoryType(pinnedCpuBuffer->data()), cudaMemoryType::cudaMemoryTypeHost)
<< "The memory type of a pinned CPU buffer was not 'host'. Is this system using Confidential Computing?";
auto const pinnedPoolCpuBuffer = std::make_unique<tr::PinnedPoolBuffer>(1024, tr::TRTDataType<float>::value);
ASSERT_EQ(tc::getPtrCudaMemoryType(pinnedPoolCpuBuffer->data()), cudaMemoryType::cudaMemoryTypeHost)
<< "The memory type of a pinned CPU buffer was not 'host'. Is this system using Confidential Computing?";
if (tc::getDeviceCount() <= 0)
{
GTEST_SKIP() << "This test cannot run further when no devices are present on the system.";
}
auto const stream = std::make_shared<tr::CudaStream>();
auto const pool = tensorrt_llm::runtime::CudaMemPool::getPrimaryPoolForDevice(stream->getDevice());
auto const deviceBuffer
= std::make_unique<tr::DeviceBuffer>(1024, tr::TRTDataType<float>::value, tr::CudaAllocatorAsync{stream, pool});
ASSERT_EQ(tc::getPtrCudaMemoryType(deviceBuffer->data()), cudaMemoryType::cudaMemoryTypeDevice);
auto const deviceSyncBuffer = std::make_unique<tr::StaticDeviceBuffer>(1024, tr::TRTDataType<float>::value);
ASSERT_EQ(tc::getPtrCudaMemoryType(deviceSyncBuffer->data()), cudaMemoryType::cudaMemoryTypeDevice);
}