mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Denis Kayshev <topenkoff@gmail.com> Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com> Update
124 lines
4.2 KiB
C++
124 lines
4.2 KiB
C++
/*
|
|
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef TOP_LEVEL_DIR
|
|
#error "Define TOP_LEVEL_DIR"
|
|
#endif
|
|
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/iBuffer.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
#include "tensorrt_llm/runtime/utils/numpyUtils.h"
|
|
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <cstddef>
|
|
#include <filesystem>
|
|
#include <numeric>
|
|
#include <string>
|
|
|
|
using namespace tensorrt_llm::runtime;
|
|
namespace tc = tensorrt_llm::common;
|
|
namespace fs = std::filesystem;
|
|
|
|
class UtilsTest : public ::testing::Test // NOLINT(cppcoreguidelines-pro-type-member-init)
|
|
{
|
|
protected:
|
|
void SetUp() override
|
|
{
|
|
mDeviceCount = tc::getDeviceCount();
|
|
if (mDeviceCount == 0)
|
|
GTEST_SKIP();
|
|
|
|
mStream = std::make_unique<CudaStream>();
|
|
mManager = std::make_unique<BufferManager>(mStream);
|
|
}
|
|
|
|
void TearDown() override {}
|
|
|
|
int mDeviceCount;
|
|
std::unique_ptr<BufferManager> mManager;
|
|
BufferManager::CudaStreamPtr mStream;
|
|
};
|
|
|
|
TEST_F(UtilsTest, LoadNpy)
|
|
{
|
|
auto const testResourcePath = fs::path{TOP_LEVEL_DIR} / "cpp/tests/resources";
|
|
auto const inputFile = testResourcePath / "data/input_tokens.npy";
|
|
|
|
auto loadedTensor = utils::loadNpy(*mManager, inputFile.string(), MemoryType::kCPU);
|
|
|
|
ASSERT_EQ(loadedTensor->getSize(), 96);
|
|
EXPECT_EQ(loadedTensor->getShape().nbDims, 2);
|
|
EXPECT_EQ(loadedTensor->getShape().d[0], 8);
|
|
EXPECT_EQ(loadedTensor->getShape().d[1], 12);
|
|
}
|
|
|
|
TEST_F(UtilsTest, LoadStoreNpy)
|
|
{
|
|
auto dims = ITensor::makeShape({2, 3, 4});
|
|
auto constexpr dataType = nvinfer1::DataType::kFLOAT;
|
|
ITensor::SharedPtr tensor{BufferManager::cpu(dims, dataType)};
|
|
auto tensorRange = BufferRange<float>(*tensor);
|
|
std::iota(tensorRange.begin(), tensorRange.end(), 0);
|
|
|
|
std::string filename{"tensor.npy"};
|
|
utils::saveNpy(*mManager, *tensor, filename);
|
|
auto loadedTensor = utils::loadNpy(*mManager, filename, MemoryType::kCPU);
|
|
|
|
ASSERT_EQ(loadedTensor->getSize(), tensor->getSize());
|
|
EXPECT_EQ(loadedTensor->getShape().nbDims, tensor->getShape().nbDims);
|
|
EXPECT_EQ(loadedTensor->getShape().d[0], tensor->getShape().d[0]);
|
|
EXPECT_EQ(loadedTensor->getShape().d[1], tensor->getShape().d[1]);
|
|
EXPECT_EQ(loadedTensor->getShape().d[2], tensor->getShape().d[2]);
|
|
|
|
auto loadedTensorRange = BufferRange<float>(*loadedTensor);
|
|
for (size_t i = 0; i < tensor->getSize(); ++i)
|
|
{
|
|
EXPECT_EQ(loadedTensorRange[i], tensorRange[i]);
|
|
}
|
|
}
|
|
|
|
TEST_F(UtilsTest, LoadStoreNpyGPU)
|
|
{
|
|
auto dims = ITensor::makeShape({2, 3, 4});
|
|
auto constexpr dataType = nvinfer1::DataType::kFLOAT;
|
|
ITensor::SharedPtr tensor{BufferManager::cpu(dims, dataType)};
|
|
auto tensorRange = BufferRange<float>(*tensor);
|
|
std::iota(tensorRange.begin(), tensorRange.end(), 0);
|
|
|
|
auto deviceTensor = mManager->copyFrom(*tensor, MemoryType::kGPU);
|
|
|
|
std::string filename{"tensor.npy"};
|
|
utils::saveNpy(*mManager, *deviceTensor, filename);
|
|
auto loadedTensor = utils::loadNpy(*mManager, filename, MemoryType::kGPU);
|
|
|
|
ASSERT_EQ(loadedTensor->getSize(), tensor->getSize());
|
|
EXPECT_EQ(loadedTensor->getShape().nbDims, tensor->getShape().nbDims);
|
|
EXPECT_EQ(loadedTensor->getShape().d[0], tensor->getShape().d[0]);
|
|
EXPECT_EQ(loadedTensor->getShape().d[1], tensor->getShape().d[1]);
|
|
EXPECT_EQ(loadedTensor->getShape().d[2], tensor->getShape().d[2]);
|
|
|
|
auto hostTensor = mManager->copyFrom(*loadedTensor, MemoryType::kCPU);
|
|
|
|
auto loadedTensorRange = BufferRange<float>(*hostTensor);
|
|
for (size_t i = 0; i < tensor->getSize(); ++i)
|
|
{
|
|
EXPECT_EQ(loadedTensorRange[i], tensorRange[i]);
|
|
}
|
|
}
|