TensorRT-LLMs/cpp/tests/unit_tests/runtime/workerPoolTest.cpp
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

115 lines
3.0 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/workerPool.h"
#include <gtest/gtest.h>
#include <random>
namespace tensorrt_llm::runtime
{
TEST(WorkerPool, basic)
{
WorkerPool pool(2);
auto fn = []() { return 12345; };
auto resultFuture = pool.enqueue(fn);
auto fn2 = []() { return 12.345f; };
auto f2 = pool.enqueue(fn2);
auto fn3 = []() { return 40.78f; };
auto f3 = pool.enqueue(fn3);
auto r1 = resultFuture.get();
auto r2 = f2.get();
auto r3 = f3.get();
EXPECT_EQ(12345, r1);
EXPECT_FLOAT_EQ(12.345f, r2);
EXPECT_FLOAT_EQ(40.78f, r3);
}
TEST(WorkerPool, voidReturn)
{
WorkerPool pool(2);
int32_t returnVal1 = 0;
int32_t returnVal2 = 0;
int32_t returnVal3 = 0;
auto fn1 = [&returnVal1]() { returnVal1 = 10001; };
auto f1 = pool.enqueue(fn1);
auto fn2 = [&returnVal2]() { returnVal2 = 10002; };
auto f2 = pool.enqueue(fn2);
auto fn3 = [&returnVal3]() { returnVal3 = 10003; };
auto f3 = pool.enqueue(fn3);
f1.get();
f2.get();
f3.get();
EXPECT_EQ(returnVal1, 10001);
EXPECT_EQ(returnVal2, 10002);
EXPECT_EQ(returnVal3, 10003);
}
class WorkerPoolTest : public ::testing::TestWithParam<std::tuple<int, int>>
{
protected:
void SetUp() override
{
mNumTasks = std::get<0>(GetParam());
mNumWorkers = std::get<1>(GetParam());
pool = std::make_unique<WorkerPool>(mNumWorkers);
}
int mNumTasks;
int mNumWorkers;
std::unique_ptr<WorkerPool> pool;
};
TEST_P(WorkerPoolTest, ScheduleTasks)
{
std::vector<std::future<void>> futures;
std::random_device randomDevice;
std::mt19937 generator(randomDevice());
std::uniform_int_distribution<> distribution(1, 5);
for (int i = 0; i < mNumTasks; ++i)
{
futures.push_back(
pool->enqueue([&]() { std::this_thread::sleep_for(std::chrono::milliseconds(distribution(generator))); }));
}
for (auto& f : futures)
{
f.get();
}
// This is a smoke test to try and catch threading and synchronization issues by stress testing. No assertion.
}
INSTANTIATE_TEST_SUITE_P(WorkerPoolTests, WorkerPoolTest,
::testing::Combine(::testing::Values(1, 2, 4, 8, 16, 32, 64, 128), // Range for number of tasks
::testing::Values(1, 2, 4, 8, 16, 32, 64, 128) // Range for number of workers
));
} // namespace tensorrt_llm::runtime