TensorRT-LLMs/examples/eagle/convert_checkpoint.py
Guoming Zhang 202bed4574 [None][chroe] Rename TensorRT-LLM to TensorRT LLM for source code. (#7851)
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>
2025-09-25 21:02:35 +08:00

491 lines
20 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import argparse
import json
import os
import time
from pathlib import Path
from tqdm import tqdm
from transformers import LlamaConfig
import tensorrt_llm
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.eagle.config import EagleConfig
from tensorrt_llm.models.eagle.model import EagleForCausalLM
from tensorrt_llm.models.model_weights_loader import ModelWeightsLoader
from tensorrt_llm.quantization import QuantAlgo
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--meta_ckpt_dir', type=str, default=None)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='auto',
choices=['auto', 'float16', 'bfloat16', 'float32'])
parser.add_argument('--vocab_size', type=int, default=32000)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_layer', type=int, default=32)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4', 'int4_gptq'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--calib_dataset',
type=str,
default='ccdv/cnn_dailymail',
help=
"The huggingface dataset name or the local directory of the dataset for calibration."
)
parser.add_argument(
"--smoothquant",
"-sq",
type=float,
default=None,
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
" to Smoothquant the model, and output int8 weights."
" A good first try is 0.5. Must be in [0, 1]")
parser.add_argument(
'--per_channel',
action="store_true",
default=False,
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
action="store_true",
default=False,
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--per_group',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale weights in the int4 range. '
'per_group chooses at run time, and for each group, a custom scaling factor. '
'The flag is built for GPTQ/AWQ quantization.')
parser.add_argument('--load_by_shard',
action='store_true',
help='Load a pretrained model shard-by-shard.')
parser.add_argument('--hidden_act', type=str, default='silu')
parser.add_argument('--rotary_base', type=float, default=10000.0)
parser.add_argument('--rotary_scaling', nargs=2, type=str, default=None)
parser.add_argument('--group_size',
type=int,
default=128,
help='Group size used in GPTQ/AWQ quantization.')
parser.add_argument("--storage-type",
"-t",
type=str,
default="fp32",
choices=["fp32", "fp16"])
parser.add_argument("--dataset-cache-dir",
type=str,
default=None,
help="cache dir to load the hugging face dataset")
parser.add_argument("--load-model-on-cpu", action="store_true")
parser.add_argument("--convert-model-on-cpu", action="store_true")
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
parser.add_argument('--eagle_model_dir', type=str, default=None)
parser.add_argument('--max_draft_len', type=int, default=63)
parser.add_argument(
'--num_eagle_layers',
type=int,
default=4,
help=
'Maximum depth of the EAGLE choices tree, i.e. maximum number of accepted draft tokens.'
)
parser.add_argument(
'--max_non_leaves_per_layer',
type=int,
default=10,
help='Maximum number of non-leaf nodes in the EAGLE choice tree.')
args = parser.parse_args()
return args
def convert_and_save_hf(config, args):
world_size = args.tp_size * args.pp_size
tllm_config = EagleConfig.from_dict(config)
for rank in range(world_size):
tllm_config.mapping = Mapping(world_size=world_size,
rank=rank,
cp_size=1,
tp_size=args.tp_size,
pp_size=args.pp_size)
model = EagleForCausalLM(tllm_config)
def check_and_update(module, dict):
if hasattr(module, 'tllm_to_externel_key_dict'):
module.tllm_to_externel_key_dict.update(dict)
else:
module.tllm_to_externel_key_dict = dict
def copy(tensors):
if isinstance(tensors, list):
if None in tensors:
return tensors
else:
return [tensor.clone() for tensor in tensors]
elif tensors is None:
return tensors
else:
return tensors.clone()
shared_weight_prefixs = []
tllm_weights = {}
customized_dict = {"drafter": ""}
if args.eagle_model_dir is None:
# Single checkpoint for ModelOpt
for idx, eagle_net in enumerate(model.eagle_nets):
check_and_update(eagle_net.drafter.fc, {"fc": "fc"})
check_and_update(eagle_net.drafter.vocab_embedding,
{f"eagle_nets.{idx}": "model"})
check_and_update(eagle_net.lm_head, {f"eagle_nets.{idx}": ""})
shared_weight_prefixs.append(f"eagle_nets.{idx}")
customized_dict[f'eagle_nets.{idx}'] = 'eagle_module'
loader = ModelWeightsLoader(eagle_model_dir, customized_dict)
loader.update_key_mapping(model)
for tllm_key, _ in tqdm(model.named_parameters()):
if any([
tllm_key.startswith(prefix)
for prefix in shared_weight_prefixs
]):
tllm_weights.update(loader.load(tllm_key, preprocess=copy))
else:
tllm_weights.update(loader.load(tllm_key))
loader.fill(tllm_weights)
else:
# Double checkpoint for HF
for idx, eagle_net in enumerate(model.eagle_nets):
check_and_update(eagle_net.drafter.fc, {"fc": "fc"})
check_and_update(eagle_net.drafter.vocab_embedding,
{f"eagle_nets.{idx}": ""})
check_and_update(eagle_net.lm_head, {f"eagle_nets.{idx}": ""})
shared_weight_prefixs.append(f"eagle_nets.{idx}")
customized_dict[f'eagle_nets.{idx}'] = ''
# Load base model
base_loader = ModelWeightsLoader(args.model_dir)
base_loader.update_key_mapping(model)
for tllm_key, _ in tqdm(model.transformer.named_parameters()):
tllm_weights.update(base_loader.load("transformer." + tllm_key))
tllm_weights.update(base_loader.load("lm_head.weight"))
for idx in range(args.num_eagle_layers):
tllm_weights.update(
base_loader.load(f"eagle_nets.{idx}.lm_head.weight",
preprocess=copy))
# Load eagle model
eagle_loader = ModelWeightsLoader(eagle_model_dir, customized_dict)
eagle_loader.update_key_mapping(model)
for tllm_key, _ in tqdm(model.eagle_nets.named_parameters()):
if not tllm_key.endswith("lm_head.weight"):
if any([
tllm_key.startswith(prefix)
for prefix in shared_weight_prefixs
]):
tllm_weights.update(
eagle_loader.load("eagle_nets." + tllm_key,
preprocess=copy))
else:
tllm_weights.update(
eagle_loader.load("eagle_nets." + tllm_key))
base_loader.fill(tllm_weights)
model.save_checkpoint(args.output_dir, save_config=(rank == 0))
if __name__ == '__main__':
# TODO(qijun): Currently, the convert script depends on a torch op:
# torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix,
# which is included in tensorrt_llm Python package. Otherwise, the convert
# script does not need to import tensorrt_llm. Will remove it after reimplementing
# the op with PyTorch.
print(tensorrt_llm.__version__)
args = parse_arguments()
world_size = args.tp_size * args.pp_size
assert args.pp_size == 1, "Pipeline parallelism is not supported in EAGLE yet."
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
hf_config = None
eagle_model_dir = args.model_dir if args.eagle_model_dir is None else args.eagle_model_dir
if args.model_dir is not None:
hf_config = LlamaConfig.from_pretrained(args.model_dir)
args.model_type = hf_config.model_type
args.n_head = hf_config.num_attention_heads
args.inter_size = hf_config.intermediate_size
args.n_layer = hf_config.num_hidden_layers
args.n_embd = hf_config.hidden_size
args.n_kv_head = hf_config.num_key_value_heads
args.rms_norm_eps = hf_config.rms_norm_eps
args.vocab_size = hf_config.vocab_size
args.rotary_scaling = hf_config.rope_scaling
args.rotary_base = hf_config.rope_theta
args.n_positions = hf_config.max_position_embeddings
args.dtype = str(
hf_config.torch_dtype)[6:] if args.dtype == 'auto' else args.dtype
if 'head_dim' in hf_config:
args.head_dim = hf_config.head_dim
else:
args.head_dim = args.n_embd // args.n_head
if 'head_size' in hf_config:
args.head_size = hf_config.head_size
else:
args.head_size = args.head_dim
if args.eagle_model_dir is None:
hf_config_eagle = hf_config.eagle
args.n_head_eagle = hf_config_eagle['num_attention_heads']
args.inter_size_eagle = hf_config_eagle['intermediate_size']
args.n_layer_eagle = hf_config_eagle['num_hidden_layers']
args.n_embd_eagle = hf_config_eagle['hidden_size']
args.n_kv_head_eagle = hf_config_eagle['num_key_value_heads']
args.rms_norm_eps_eagle = hf_config_eagle['rms_norm_eps']
args.n_positions_eagle = hf_config_eagle['max_position_embeddings']
if 'head_dim' in hf_config_eagle:
args.head_dim_eagle = hf_config_eagle['head_dim']
else:
args.head_dim_eagle = args.n_embd_eagle // args.n_head_eagle
if 'head_size' in hf_config_eagle:
args.head_size_eagle = hf_config_eagle['head_size']
else:
args.head_size_eagle = args.head_dim_eagle
else:
hf_config_eagle = LlamaConfig.from_pretrained(args.eagle_model_dir)
args.n_head_eagle = hf_config_eagle.num_attention_heads
args.inter_size_eagle = hf_config_eagle.intermediate_size
args.n_layer_eagle = hf_config_eagle.num_hidden_layers
args.n_embd_eagle = hf_config_eagle.hidden_size
args.n_kv_head_eagle = hf_config_eagle.num_key_value_heads
args.rms_norm_eps_eagle = hf_config_eagle.rms_norm_eps
args.n_positions_eagle = hf_config_eagle.max_position_embeddings
if 'head_dim' in hf_config_eagle:
args.head_dim_eagle = hf_config_eagle.head_dim
else:
args.head_dim_eagle = args.n_embd_eagle // args.n_head_eagle
if 'head_size' in hf_config_eagle:
args.head_size_eagle = hf_config_eagle.head_size
else:
args.head_size_eagle = args.head_dim_eagle
elif args.meta_ckpt_dir is not None:
assert False, "meta ckpt is not supported yet"
with open(Path(args.meta_ckpt_dir, "params.json")) as fp:
meta_config: dict = json.load(fp)
args.n_embd = meta_config["dim"]
args.n_head = meta_config["n_heads"]
args.n_layer = meta_config["n_layers"]
args.n_kv_head = meta_config.get("n_kv_heads", args.n_head)
if "hidden_dim" in meta_config:
args.inter_size = meta_config["hidden_dim"]
else:
args.multiple_of = meta_config.get("multiple_of", 1)
n_embd = int(4 * args.n_embd * 2 / 3)
args.ffn_dim_multiplier = meta_config.get("ffn_dim_multiplier", 1)
args.inter_size = args.multiple_of * (
(int(n_embd * args.ffn_dim_multiplier) + args.multiple_of - 1)
// args.multiple_of)
args.rms_norm_eps = meta_config["norm_eps"]
if args.rotary_scaling is not None:
# assert args.use_gpt_attention_plugin, "RoPE scaling is only supported through GPT attention plugin."
rotary_scaling = {
"type": args.rotary_scaling["rope_type"],
}
args.rotary_scaling = rotary_scaling
eagle_net_config = {
'architecture': "LlamaForCausalLM",
'dtype': args.dtype,
'logits_dtype': 'float32',
'num_hidden_layers': args.n_layer_eagle,
'num_attention_heads': args.n_head_eagle,
'hidden_size': args.n_embd_eagle,
'intermediate_size': args.inter_size_eagle,
'num_key_value_heads': args.n_kv_head_eagle,
'vocab_size': args.vocab_size,
'position_embedding_type': 'rope_gpt_neox',
'max_position_embeddings': args.n_positions_eagle,
'hidden_act': args.hidden_act,
'rotary_base': args.rotary_base,
'rotary_scaling': args.rotary_scaling,
'norm_epsilon': args.rms_norm_eps_eagle,
'quantization': {
'quant_algo': None,
'kv_cache_quant_algo': None,
},
'mapping': {
'world_size': world_size,
'tp_size': args.tp_size,
'pp_size': args.pp_size,
},
'use_parallel_embedding': args.use_parallel_embedding,
'embedding_sharding_dim': args.embedding_sharding_dim,
'head_dim': args.head_dim_eagle,
'head_size': args.head_size_eagle
}
config = {
'architecture': 'EagleForCausalLM',
'dtype': args.dtype,
'logits_dtype': 'float32',
'num_hidden_layers': args.n_layer,
'num_attention_heads': args.n_head,
'hidden_size': args.n_embd,
'intermediate_size': args.inter_size,
'num_key_value_heads': args.n_kv_head,
'vocab_size': args.vocab_size,
'position_embedding_type': 'rope_gpt_neox',
'max_position_embeddings': args.n_positions,
'hidden_act': args.hidden_act,
'rotary_base': args.rotary_base,
'rotary_scaling': args.rotary_scaling,
'norm_epsilon': args.rms_norm_eps,
'quantization': {
'quant_algo': None,
'kv_cache_quant_algo': None,
},
'mapping': {
'world_size': world_size,
'tp_size': args.tp_size,
'pp_size': args.pp_size,
},
'use_parallel_embedding': args.use_parallel_embedding,
'embedding_sharding_dim': args.embedding_sharding_dim,
'max_draft_len': args.max_draft_len,
'num_eagle_layers': args.num_eagle_layers,
'max_non_leaves_per_layer': args.max_non_leaves_per_layer,
'eagle_net_config': eagle_net_config,
'head_dim': args.head_dim,
'head_size': args.head_size
}
assert args.max_draft_len <= 256, "args.max_draft_len > 256 is not supported"
if args.use_weight_only:
if args.weight_only_precision == 'int8':
config['quantization']['quant_algo'] = QuantAlgo.W8A16
elif args.weight_only_precision == 'int4':
config['quantization']['quant_algo'] = QuantAlgo.W4A16
elif args.smoothquant:
if args.per_channel:
if args.per_token:
config['quantization'][
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN
else:
config['quantization'][
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TENSOR_PLUGIN
else:
if args.per_token:
config['quantization'][
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_TENSOR_PER_TOKEN_PLUGIN
else:
config['quantization'][
'quant_algo'] = QuantAlgo.W8A8_SQ_PER_TENSOR_PLUGIN
if args.int8_kv_cache:
config['quantization']['kv_cache_quant_algo'] = QuantAlgo.INT8
if args.weight_only_precision == 'int4_gptq':
config['quantization'].update({
"group_size": args.group_size,
"has_zero_point": True,
"pre_quant_scale": False,
'quant_algo': QuantAlgo.W4A16_GPTQ
})
# Update quant config if hf_quant_config.json exists
quant_config = {}
try:
with open(eagle_model_dir + '/' + 'hf_quant_config.json') as f:
quant_config = json.load(f)
if "lm_head" in quant_config['quantization']['exclude_modules']:
quant_config['quantization']['exclude_modules'] += [
f"eagle_nets.{i}.lm_head"
for i in range(args.num_eagle_layers)
]
config['quantization'].update(quant_config['quantization'])
config['eagle_net_config']['quantization'].update(
quant_config['quantization'])
except IOError:
pass
convert_and_save_hf(config, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')