TensorRT-LLMs/examples/llm-api/llm_inference_distributed.py
Erin e277766f0d
chores: merge examples for v1.0 doc (#5736)
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>
2025-07-08 21:00:42 -07:00

45 lines
1.7 KiB
Python

### :section Basics
### :title Distributed LLM Generation
### :order 3
from tensorrt_llm import LLM, SamplingParams
def main():
# model could accept HF model name or a path to local HF model.
llm = LLM(
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
# Enable 2-way tensor parallelism
tensor_parallel_size=2
# Enable 2-way pipeline parallelism if needed
# pipeline_parallel_size=2
# Enable 2-way expert parallelism for MoE model's expert weights
# moe_expert_parallel_size=2
# Enable 2-way tensor parallelism for MoE model's expert weights
# moe_tensor_parallel_size=2
)
# Sample prompts.
prompts = [
"Hello, my name is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
for output in llm.generate(prompts, sampling_params):
print(
f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}"
)
# Got output like
# Prompt: 'Hello, my name is', Generated text: '\n\nJane Smith. I am a student pursuing my degree in Computer Science at [university]. I enjoy learning new things, especially technology and programming'
# Prompt: 'The capital of France is', Generated text: 'Paris.'
# Prompt: 'The future of AI is', Generated text: 'an exciting time for us. We are constantly researching, developing, and improving our platform to create the most advanced and efficient model available. We are'
# The entry point of the program need to be protected for spawning processes.
if __name__ == '__main__':
main()