TensorRT-LLMs/examples/llm-api/llm_sparse_attention.py
heyuhhh 6e470aab72
[None] [feat] Optimize the algorithm part of RocketKV (#9333)
Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com>
2025-12-01 09:04:09 +08:00

230 lines
7.7 KiB
Python

### :title Sparse Attention
### :order 5
### :section Customization
"""
This example demonstrates how to use sparse attention with TensorRT-LLM.
Supported sparse attention algorithms:
- RocketKV
- DSA
Usage:
```bash
python llm_sparse_attention.py --algo ROCKETKV --attention_backend TRTLLM --window_size 32 --kernel_size 63 --prompt_budget 2048
```
"""
import argparse
import json
from tensorrt_llm import LLM, SamplingParams
from tensorrt_llm.llmapi import (CudaGraphConfig, DeepSeekSparseAttentionConfig,
KvCacheConfig, MoeConfig,
RocketSparseAttentionConfig)
def read_input(input_file):
results = []
with open(input_file, 'r') as f:
for line in f:
ret = json.loads(line)
results.append(ret)
return results
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_path',
type=str,
default=
"/home/scratch.trt_llm_data/llm-models/llama-3.1-model/Llama-3.1-8B-Instruct"
)
parser.add_argument(
'--input_file',
type=str,
default="tests/unittest/_torch/multi_gpu/test_star_attention_input.jsonl"
)
# Build config
parser.add_argument('--algo',
type=str,
default='ROCKETKV',
choices=['ROCKETKV', 'DSA'])
parser.add_argument('--attention_backend',
type=str,
default='TRTLLM',
choices=['VANILLA', 'TRTLLM'])
# RocketKV config
parser.add_argument('--window_size',
type=int,
default=32,
help="The window size for RocketKV.")
parser.add_argument('--kernel_size',
type=int,
default=63,
help="The kernel size for RocketKV.")
parser.add_argument('--prompt_budget',
type=int,
default=2048,
help="The prompt budget for RocketKV.")
parser.add_argument('--topk',
type=int,
default=64,
help='Top-k for RocketKV')
parser.add_argument('--kt_cache_dtype',
type=str,
default='float8_e5m2',
choices=['bfloat16', 'float8_e5m2'])
parser.add_argument('--index_max_chunk_size',
type=int,
default=32768,
help="The maximum chunk size for the indexer.")
parser.add_argument("--max_seq_len",
type=int,
default=10240,
help="The maximum sequence length.")
parser.add_argument("--max_batch_size",
type=int,
default=256,
help="The maximum batch size.")
parser.add_argument("--max_new_tokens",
type=int,
default=128,
help="The maximum new tokens.")
parser.add_argument(
"--max_num_tokens",
type=int,
default=81920,
help=
"The maximum total tokens (context + generation) across all sequences in a batch."
)
# Parallelism
parser.add_argument('--moe_backend',
type=str,
default='CUTLASS',
choices=[
'CUTLASS', 'TRTLLM', 'VANILLA', 'WIDEEP',
'DEEPGEMM', 'CUTEDSL', 'TRITON'
])
parser.add_argument('--tp_size', type=int, default=1)
parser.add_argument('--moe_ep_size', type=int, default=-1)
parser.add_argument('--enable_attention_dp',
default=False,
action='store_true')
# KV cache
parser.add_argument('--kv_cache_dtype', type=str, default='auto')
parser.add_argument("--kv_cache_fraction", type=float, default=0.7)
parser.add_argument('--tokens_per_block', type=int, default=32)
parser.add_argument('--num_samples', type=int, default=10)
# Runtime
parser.add_argument('--print_iter_log',
default=False,
action='store_true',
help='Print iteration logs during execution')
parser.add_argument('--use_cuda_graph', default=False, action='store_true')
parser.add_argument('--cuda_graph_padding_enabled',
default=False,
action='store_true')
parser.add_argument('--cuda_graph_batch_sizes',
nargs='+',
type=int,
default=None)
parser.add_argument('--enable_chunked_prefill',
default=False,
action='store_true',
help='Enable chunked prefill')
args = parser.parse_args()
return args
def run_llm(args, sparse_attention_config):
data = read_input(args.input_file)
num_samples = args.num_samples if args.num_samples is not None else len(
data)
data = data[:num_samples]
kv_cache_config = KvCacheConfig(
enable_block_reuse=
False, # sparse attention does not support kv cache reuse now
free_gpu_memory_fraction=args.kv_cache_fraction,
tokens_per_block=args.tokens_per_block,
dtype=args.kv_cache_dtype,
)
cuda_graph_config = CudaGraphConfig(
batch_sizes=args.cuda_graph_batch_sizes,
enable_padding=args.cuda_graph_padding_enabled,
) if args.use_cuda_graph else None
llm = LLM(
model=args.model_path,
backend='pytorch',
kv_cache_config=kv_cache_config,
attn_backend=args.attention_backend,
sparse_attention_config=sparse_attention_config,
max_batch_size=args.max_batch_size,
max_seq_len=args.max_seq_len,
max_num_tokens=args.max_num_tokens,
tensor_parallel_size=args.tp_size,
moe_expert_parallel_size=args.moe_ep_size,
enable_attention_dp=args.enable_attention_dp,
cuda_graph_config=cuda_graph_config,
print_iter_log=args.print_iter_log,
enable_iter_perf_stats=args.print_iter_log,
moe_config=MoeConfig(backend=args.moe_backend),
enable_chunked_prefill=args.enable_chunked_prefill,
)
prompts = []
reference = []
for sample in data:
prompts.append(
{'prompt': sample['input_context'] + sample['input_query']})
reference.append(sample['outputs'])
sampling_params = SamplingParams(add_special_tokens=False,
max_tokens=args.max_new_tokens,
temperature=0.8,
top_p=0.95)
outputs = llm.generate(prompts, sampling_params)
for idx, output in enumerate(outputs):
print(
f'Generated text: {output.outputs[0].text!r}, ref: {reference[idx]}'
)
def run_RocketKV(args):
sparse_attention_config = RocketSparseAttentionConfig(
window_size=args.window_size,
kernel_size=args.kernel_size,
prompt_budget=args.prompt_budget,
topk=args.topk,
kt_cache_dtype=args.kt_cache_dtype,
)
run_llm(args, sparse_attention_config)
def run_DSA(args):
sparse_attention_config = DeepSeekSparseAttentionConfig(
indexer_max_chunk_size=args.index_max_chunk_size, )
run_llm(args, sparse_attention_config)
def main():
args = parse_arguments()
if args.algo == 'ROCKETKV':
run_RocketKV(args)
elif args.algo == 'DSA':
run_DSA(args)
else:
raise ValueError(f"Invalid algorithm: {args.algo}")
if __name__ == "__main__":
main()