TensorRT-LLMs/tensorrt_llm/_ipc_utils.py
yufeiwu-nv fd3d3a553d
[None][chore] Modify python ipc_util to align with C++ path (#9894)
Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com>
Co-authored-by: ruodil <200874449+ruodil@users.noreply.github.com>
2025-12-12 15:55:22 +08:00

159 lines
5.5 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import array
import struct
import sys
from typing import List, Tuple
from tensorrt_llm._utils import mpi_disabled
try:
from cuda.bindings import driver as cuda
from cuda.bindings import runtime as cudart
except ImportError:
from cuda import cuda, cudart
from ._utils import mpi_comm
from .logger import logger
from .mapping import Mapping
def _raise_if_error(error: cudart.cudaError_t | cuda.CUresult):
if isinstance(error, cudart.cudaError_t):
if error != cudart.cudaError_t.cudaSuccess:
raise RuntimeError(f"CUDA Runtime API error: {repr(error)}")
if isinstance(error, cuda.CUresult):
if error != cuda.CUresult.CUDA_SUCCESS:
raise RuntimeError(f"CUDA Driver API error: {repr(error)}")
def can_access_peer(mapping: Mapping) -> bool:
src_node = mapping.local_rank
for rank in mapping.tp_group:
dest_node = mapping.get_local_rank(rank)
# Early exit if devices are on different nodes
if mapping.get_node_rank(rank) != mapping.node_rank:
logger.info(
f"Detect inter-node TP between rank {mapping.rank} and rank {rank}, fail to access peer GPU memory"
)
return False
# Skip if same device
if dest_node == src_node:
continue
error, result = cudart.cudaDeviceCanAccessPeer(src_node, dest_node)
_raise_if_error(error)
if result == 0:
logger.info(
f"cudaDeviceCanAccessPeer failed for device: {src_node} peerDevice: {dest_node}"
)
return False
return True
class IpcMemory:
# WARNING: Must in sync with FLAGS_SIZE in cpp/include/tensorrt_llm/runtime/ipcUtils.h
# (Max all reduce blocks + 1) * sizeof(int)
IPC_BARRIERS_SIZE_PER_GPU = (24 + 1) * 4
def __init__(self, mapping: Mapping, size: int, open_ipc: bool = True):
self.mapping = mapping
self.open_ipc = open_ipc and mapping.tp_size <= mapping.gpus_per_node
self.peer_ptrs = [0] * mapping.tp_size
self.local_ptr = 0
if self.open_ipc:
self.peer_ptrs, self.local_ptr = IpcMemory.open_ipc_memory(self.mapping, size, True)
def __del__(self):
if not sys.is_finalizing() and self.open_ipc:
IpcMemory.close_ipc_memory(self.mapping, self.peer_ptrs)
def serialize(self) -> List[int]:
buffer = bytes(0)
for ptr in self.peer_ptrs:
buffer += struct.pack("P", ptr)
return array.array("Q", buffer).tolist()
@staticmethod
def open_ipc_memory(
mapping: Mapping, size: int, set_to_zero: bool = False
) -> Tuple[List[int], int]:
"""Allocates a buffer with the given *size* on each GPU. Then, enables IPC communication between TP groups.
Returns a list of buffer pointers, buffers[i] is a handle to the corresponding buffer residing on GPU #i.
Call close_ipc_handle with the *buffer*.
"""
def align_size(size, alignment):
if (size % alignment) != 0:
size += alignment - (size % alignment)
return size
if mpi_disabled():
from tensorrt_llm._utils import torch_comm
allgather = torch_comm().tp_allgather
else:
comm = mpi_comm().Split(
mapping.pp_rank * mapping.cp_size + mapping.cp_rank, mapping.tp_rank
)
allgather = comm.allgather
# see allocateIpcMemory in cpp/tensorrt_llm/runtime/ipcUtils.cpp for alignment reason
# 1 << 21 is 2MB
aligned_size = align_size(size, 1 << 21)
error, local_ptr = cudart.cudaMalloc(aligned_size)
_raise_if_error(error)
if set_to_zero:
_raise_if_error(cudart.cudaMemset(local_ptr, 0, aligned_size)[0])
error, local_handle = cudart.cudaIpcGetMemHandle(local_ptr)
_raise_if_error(error)
handles_reserved = allgather(local_handle.reserved)
handles = []
for reserved in handles_reserved:
handle = cudart.cudaIpcMemHandle_t()
handle.reserved = reserved
handles.append(handle)
peer_ptrs = []
for node, handle in enumerate(handles):
if node == mapping.tp_rank:
peer_ptrs.append(local_ptr)
else:
error, ptr = cudart.cudaIpcOpenMemHandle(
handle, cudart.cudaIpcMemLazyEnablePeerAccess
)
_raise_if_error(error)
peer_ptrs.append(ptr)
return peer_ptrs, local_ptr
@staticmethod
def close_ipc_memory(mapping: Mapping, peer_ptrs: List[int]):
for node, ptr in enumerate(peer_ptrs):
if node == mapping.tp_rank:
if ptr != 0:
_raise_if_error(cudart.cudaFree(ptr)[0])
else:
if ptr != 0:
_raise_if_error(cudart.cudaIpcCloseMemHandle(ptr)[0])