TensorRT-LLMs/tensorrt_llm/evaluate/cnn_dailymail.py
Yan Chunwei 9bd42ecf9b
[TRTLLM-5208][BREAKING CHANGE] chore: make pytorch LLM the default (#5312)
Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>
2025-06-20 03:01:10 +08:00

132 lines
5.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Iterable, List, Optional, Union
import click
import datasets
import evaluate
from .. import LLM as PyTorchLLM
from .._tensorrt_engine import LLM
from ..llmapi import RequestOutput
from ..logger import logger
from ..sampling_params import SamplingParams
from .interface import Evaluator
class CnnDailymail(Evaluator):
def __init__(self,
dataset_path: Optional[str] = None,
num_samples: Optional[int] = None,
random_seed: int = 0,
rouge_path: Optional[str] = None,
apply_chat_template: bool = False,
system_prompt: Optional[str] = None):
super().__init__(random_seed=random_seed,
apply_chat_template=apply_chat_template,
system_prompt=system_prompt)
if dataset_path is None:
dataset_path = "ccdv/cnn_dailymail"
self.data = datasets.load_dataset(dataset_path,
"3.0.0",
split="test",
trust_remote_code=True)
self.data = self.data.shuffle(random_seed)
if num_samples is None:
self.num_samples = self.data.num_rows
else:
self.num_samples = min(num_samples, self.data.num_rows)
if rouge_path is None:
rouge_path = "rouge"
self.rouge = evaluate.load(rouge_path)
def generate_samples(self) -> Iterable[tuple]:
for i, sample in enumerate(self.data):
if i >= self.num_samples:
break
prompt = sample["article"] + " TL;DR:"
prompt = prompt.strip().replace(" n't", "n't")
yield prompt, None, sample["highlights"]
def compute_score(self, outputs: List[RequestOutput],
references: List[str]) -> float:
for beam_idx in range(len(outputs[0].outputs)):
metrics = self.rouge.compute(
predictions=[output.outputs[0].text for output in outputs],
references=references)
logger.info(f"Beam {beam_idx} rouge scores:")
for key in metrics.keys():
logger.info(f"\t{key}: {metrics[key]*100:.3f}")
if beam_idx == 0:
rouge1 = metrics["rouge1"] * 100
return rouge1
@click.command("cnn_dailymail")
@click.option("--dataset_path",
type=str,
default=None,
help="The path to CNN Dailymail dataset. "
"If unspecified, the dataset is downloaded from HF hub.")
@click.option(
"--num_samples",
type=int,
default=None,
help="Number of samples to run the evaluation; None means full dataset."
)
@click.option("--random_seed",
type=int,
default=0,
help="Random seed for dataset processing.")
@click.option("--rouge_path",
type=str,
default=None,
help="The path to rouge repository."
"If unspecified, the repository is downloaded from HF hub.")
@click.option("--apply_chat_template",
is_flag=True,
default=False,
help="Whether to apply chat template.")
@click.option("--system_prompt",
type=str,
default=None,
help="System prompt.")
@click.option("--max_input_length",
type=int,
default=924,
help="Maximum prompt length.")
@click.option("--max_output_length",
type=int,
default=100,
help="Maximum generation length.")
@click.pass_context
@staticmethod
def command(ctx, dataset_path: Optional[str], num_samples: int,
random_seed: int, rouge_path: Optional[str],
apply_chat_template: bool, system_prompt: Optional[str],
max_input_length: int, max_output_length: int) -> None:
llm: Union[LLM, PyTorchLLM] = ctx.obj
sampling_params = SamplingParams(
max_tokens=max_output_length,
truncate_prompt_tokens=max_input_length)
evaluator = CnnDailymail(dataset_path,
num_samples=num_samples,
random_seed=random_seed,
rouge_path=rouge_path,
apply_chat_template=apply_chat_template,
system_prompt=system_prompt)
evaluator.evaluate(llm, sampling_params)
llm.shutdown()