mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
918 lines
35 KiB
Python
918 lines
35 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import copy
|
|
import json
|
|
import os
|
|
from contextlib import contextmanager
|
|
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
|
|
|
import click
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
import tensorrt_llm.profiler as profiler
|
|
from tensorrt_llm.inputs import prompt_inputs
|
|
|
|
try:
|
|
from lm_eval.api.model import TemplateLM
|
|
from lm_eval.tasks import TaskManager
|
|
except ImportError:
|
|
TemplateLM = object
|
|
|
|
from .. import LLM as PyTorchLLM
|
|
from .._tensorrt_engine import LLM
|
|
from ..inputs import (ConversationMessage, MultimodalDataTracker,
|
|
add_multimodal_placeholders, convert_image_mode)
|
|
from ..inputs.utils import apply_chat_template as trtllm_apply_chat_template
|
|
from ..llmapi import RequestOutput
|
|
from ..logger import logger
|
|
from ..sampling_params import SamplingParams
|
|
from .interface import Evaluator
|
|
|
|
# NOTE: lm_eval uses "<image>" as the default image placeholder
|
|
# https://github.com/EleutherAI/lm-evaluation-harness/blob/7f04db12d2f8e7a99a0830d99eb78130e1ba2122/lm_eval/models/hf_vlms.py#L25
|
|
LM_EVAL_DEFAULT_IMAGE_PLACEHOLDER = "<image>"
|
|
|
|
|
|
class LmEvalWrapper(TemplateLM):
|
|
|
|
def __init__(self,
|
|
llm: Union[LLM, PyTorchLLM],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
streaming: bool = False,
|
|
chat_template_kwargs: Optional[dict[str, Any]] = None,
|
|
model_type: str | None = None,
|
|
is_force_single_image: bool = False):
|
|
super().__init__()
|
|
self.llm = llm
|
|
self.sampling_params = sampling_params
|
|
self.streaming = streaming
|
|
self.chat_template_kwargs = chat_template_kwargs
|
|
|
|
@property
|
|
def eot_token_id(self) -> int:
|
|
return self.llm.tokenizer.eos_token_id
|
|
|
|
def apply_chat_template(self,
|
|
chat_history: List[Dict[str, str]],
|
|
add_generation_prompt: bool = True) -> str:
|
|
"""
|
|
Method to apply a chat template to a list of chat history between user and model.
|
|
"""
|
|
return self.llm.tokenizer.apply_chat_template(
|
|
chat_history,
|
|
tokenize=False,
|
|
add_generation_prompt=add_generation_prompt,
|
|
continue_final_message=not add_generation_prompt,
|
|
**(self.chat_template_kwargs or {}),
|
|
)
|
|
|
|
@property
|
|
def tokenizer_name(self) -> str:
|
|
return self.llm.tokenizer.name_or_path.replace("/", "__")
|
|
|
|
def tok_encode(self, string: str, **kwargs) -> List[int]:
|
|
return self.llm.tokenizer.encode(string, **kwargs)
|
|
|
|
def _loglikelihood_tokens(self, requests,
|
|
**kwargs) -> List[Tuple[float, bool]]:
|
|
raise NotImplementedError()
|
|
|
|
def loglikelihood_rolling(self,
|
|
requests,
|
|
disable_tqdm: bool = False) -> List[float]:
|
|
raise NotImplementedError()
|
|
|
|
def _get_sampling_params(self, gen_kwargs: dict) -> SamplingParams:
|
|
params_mapping = {
|
|
"temperature": "temperature",
|
|
"top_p": "top_p",
|
|
"max_gen_toks": "max_tokens",
|
|
"until": "stop",
|
|
}
|
|
# IMPORTANT:
|
|
# lm-evaluation-harness controls generation primarily via per-task gen_kwargs.
|
|
# For example, the `local-completions` model wrapper uses:
|
|
# max_tokens <- gen_kwargs["max_tokens"] or gen_kwargs["max_gen_toks"] or _max_gen_toks
|
|
# temperature <- gen_kwargs.get("temperature", 0)
|
|
# stop <- gen_kwargs.get("until", ...)
|
|
# See: https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/openai_completions.py
|
|
|
|
if self.sampling_params is None:
|
|
sampling_params = SamplingParams(
|
|
max_tokens=gen_kwargs.get("max_gen_toks", 256),
|
|
temperature=gen_kwargs.get("temperature", 0),
|
|
stop=gen_kwargs.get("until", None),
|
|
)
|
|
else:
|
|
sampling_params = copy.deepcopy(self.sampling_params)
|
|
|
|
for lm_eval_key, trtllm_key in params_mapping.items():
|
|
value = gen_kwargs.pop(lm_eval_key, None)
|
|
if value is not None:
|
|
setattr(sampling_params, trtllm_key, value)
|
|
return sampling_params
|
|
|
|
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
|
profiler.start("trtllm exec")
|
|
results = []
|
|
for request in tqdm(requests,
|
|
desc="Submitting requests",
|
|
disable=disable_tqdm):
|
|
prompt, gen_kwargs = request.args
|
|
sampling_params = self._get_sampling_params(gen_kwargs)
|
|
output = self.llm.generate_async(prompt,
|
|
sampling_params=sampling_params,
|
|
streaming=self.streaming)
|
|
results.append(output)
|
|
|
|
outputs = []
|
|
for output in tqdm(results,
|
|
desc="Fetching responses",
|
|
disable=disable_tqdm):
|
|
outputs.append(output.result())
|
|
|
|
profiler.stop("trtllm exec")
|
|
elapsed_time = profiler.elapsed_time_in_sec("trtllm exec")
|
|
logger.info(f"TRTLLM execution time: {elapsed_time:.3f} seconds.")
|
|
profiler.reset("trtllm exec")
|
|
|
|
return [output.outputs[0].text for output in outputs]
|
|
|
|
|
|
class MultimodalLmEvalWrapper(LmEvalWrapper):
|
|
"""
|
|
Multimodal wrapper for lm-evaluation-harness that handles vision-language models.
|
|
|
|
This wrapper extends the base LmEvalWrapper to support multimodal inputs,
|
|
particularly for tasks that require both text and image processing.
|
|
"""
|
|
|
|
def __init__(self,
|
|
llm: Union[LLM, PyTorchLLM],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
streaming: bool = False,
|
|
max_images: int = 999,
|
|
chat_template_kwargs: Optional[dict[str, Any]] = None,
|
|
model_type: str | None = None,
|
|
is_force_single_image: bool = False):
|
|
"""
|
|
Initialize the multimodal wrapper.
|
|
|
|
Args:
|
|
llm: The language model instance (either TensorRT or PyTorch)
|
|
sampling_params: Parameters for text generation
|
|
streaming: Whether to use streaming generation
|
|
max_images: Maximum number of images per prompt (currently unlimited in TRT-LLM), set to 999 from lm_eval's default value.
|
|
"""
|
|
super().__init__(llm, sampling_params, streaming)
|
|
|
|
# NOTE: Required by lm_eval to identify this as a multimodal model
|
|
self.MULTIMODAL = True
|
|
self.max_images = max_images
|
|
self.chat_template_kwargs = chat_template_kwargs
|
|
self.model_type = model_type if model_type is not None else self._get_model_type(
|
|
llm)
|
|
self.is_force_single_image = is_force_single_image
|
|
|
|
# NOTE: In TRT-LLM, currently we do not support interleaved text and image. Instead, we are adding image placeholders at the end of the text or at the beginning of the text.
|
|
# So, until we support interleaved text and image, we set this to False.
|
|
self.interleave = False
|
|
|
|
def _get_model_type(self, llm: Union[LLM, PyTorchLLM]) -> str:
|
|
"""Extract model type from the model configuration."""
|
|
config_path = os.path.join(llm._hf_model_dir, 'config.json')
|
|
|
|
if not os.path.exists(config_path):
|
|
raise FileNotFoundError(
|
|
f"Model configuration file not found: {config_path}")
|
|
|
|
try:
|
|
with open(config_path, 'r') as f:
|
|
config = json.load(f)
|
|
except json.JSONDecodeError as e:
|
|
raise ValueError(
|
|
f"Invalid JSON in model configuration file {config_path}: {e}")
|
|
|
|
if 'model_type' not in config:
|
|
raise KeyError(
|
|
f"'model_type' key not found in model configuration: {config_path}"
|
|
)
|
|
|
|
return config['model_type']
|
|
|
|
def apply_chat_template(self,
|
|
chat_history: List[Dict[str, str]],
|
|
add_generation_prompt: bool = True) -> str:
|
|
"""
|
|
Apply chat template to multimodal conversation history.
|
|
|
|
Converts text with image placeholders into structured format expected by
|
|
the multimodal processor.
|
|
|
|
Adapted from: https://github.com/EleutherAI/lm-evaluation-harness/blob/7f04db12d2f8e7a99a0830d99eb78130e1ba2122/lm_eval/models/hf_vlms.py#L225
|
|
"""
|
|
mm_placeholder_counts = []
|
|
for i in range(len(chat_history)):
|
|
content = chat_history[i]
|
|
text = content["content"]
|
|
image_count = min(self.max_images,
|
|
text.count(LM_EVAL_DEFAULT_IMAGE_PLACEHOLDER))
|
|
|
|
if self.interleave:
|
|
# TODO: Implement interleaved text and image.
|
|
text.split(LM_EVAL_DEFAULT_IMAGE_PLACEHOLDER)
|
|
...
|
|
else:
|
|
text = text.replace(LM_EVAL_DEFAULT_IMAGE_PLACEHOLDER, "")
|
|
|
|
conv = ConversationMessage(role=content.get("role", "user"),
|
|
content=text)
|
|
mm_data_tracker = MultimodalDataTracker(self.model_type)
|
|
|
|
# NOTE: Since we already have loaded images, for the placeholder purpose, we add data here.
|
|
for _ in range(image_count):
|
|
mm_data_tracker.add_data("image", None)
|
|
mm_placeholder_count = mm_data_tracker.placeholder_counts()
|
|
if mm_placeholder_count:
|
|
# TODO: This is an assumption of not interleaving text and image. Need to extend to interleaved texts.
|
|
conv["content"] = add_multimodal_placeholders(
|
|
self.model_type, conv["content"], mm_placeholder_count)
|
|
mm_placeholder_counts.append(mm_placeholder_count)
|
|
chat_history[i] = conv
|
|
|
|
output = trtllm_apply_chat_template(
|
|
model_type=self.model_type,
|
|
tokenizer=self.llm.tokenizer,
|
|
processor=getattr(self.llm.input_processor, 'processor', None),
|
|
conversation=chat_history,
|
|
add_generation_prompt=add_generation_prompt,
|
|
mm_placeholder_counts=mm_placeholder_counts,
|
|
tools=None,
|
|
chat_template_kwargs={
|
|
**(self.chat_template_kwargs or {}),
|
|
"continue_final_message":
|
|
not add_generation_prompt,
|
|
})
|
|
return output
|
|
|
|
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
|
"""
|
|
Generate text responses for multimodal requests.
|
|
|
|
This method processes multimodal requests that include both text prompts
|
|
and visual data (images).
|
|
|
|
Args:
|
|
requests: List of multimodal generation requests
|
|
disable_tqdm: Whether to disable progress bars
|
|
|
|
Returns:
|
|
List of generated text responses
|
|
"""
|
|
profiler.start("trtllm exec")
|
|
results = []
|
|
for request in tqdm(requests,
|
|
desc="Submitting requests",
|
|
disable=disable_tqdm):
|
|
|
|
# NOTE: For now, only this part is different from the original generate_until
|
|
prompt, gen_kwargs, media_data = request.args
|
|
prompt = prompt_inputs(prompt)
|
|
|
|
# NOTE: Convert RGBA format to RGB format
|
|
if self.is_force_single_image:
|
|
# NOTE: This is a workaround to force single image for models which only support single image.
|
|
images = [convert_image_mode(media_data["visual"][0], "RGB")]
|
|
else:
|
|
images = [
|
|
convert_image_mode(img, "RGB")
|
|
for img in media_data["visual"]
|
|
]
|
|
prompt["multi_modal_data"] = {"image": images}
|
|
|
|
sampling_params = self._get_sampling_params(gen_kwargs)
|
|
output = self.llm.generate_async(prompt,
|
|
sampling_params=sampling_params,
|
|
streaming=self.streaming)
|
|
results.append(output)
|
|
|
|
outputs = []
|
|
for output in tqdm(results,
|
|
desc="Fetching responses",
|
|
disable=disable_tqdm):
|
|
outputs.append(output.result())
|
|
|
|
profiler.stop("trtllm exec")
|
|
elapsed_time = profiler.elapsed_time_in_sec("trtllm exec")
|
|
logger.info(f"TRTLLM execution time: {elapsed_time:.3f} seconds.")
|
|
profiler.reset("trtllm exec")
|
|
|
|
return [output.outputs[0].text for output in outputs]
|
|
|
|
|
|
class LmEvalEvaluator(Evaluator):
|
|
|
|
def __init__(self,
|
|
task_name: str,
|
|
dataset_path: str = None,
|
|
num_samples: Optional[int] = None,
|
|
random_seed: int = 0,
|
|
apply_chat_template: bool = False,
|
|
fewshot_as_multiturn: bool = False,
|
|
system_prompt: Optional[str] = None,
|
|
is_multimodal: bool = False,
|
|
chat_template_kwargs: Optional[dict[str, Any]] = None):
|
|
try:
|
|
import lm_eval
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
f"Evaluation task {self.__class__.__name__} requires `lm_eval`. "
|
|
"Please install the package first, e.g., `pip install lm_eval`."
|
|
) from e
|
|
import lm_eval.tasks
|
|
self.MULTIMODAL = is_multimodal
|
|
if self.MULTIMODAL:
|
|
apply_chat_template = True
|
|
logger.info(
|
|
"Chat template automatically enabled for multimodal evaluation."
|
|
)
|
|
super().__init__(random_seed=random_seed,
|
|
apply_chat_template=apply_chat_template,
|
|
fewshot_as_multiturn=fewshot_as_multiturn,
|
|
system_prompt=system_prompt,
|
|
chat_template_kwargs=chat_template_kwargs)
|
|
self.task_name = task_name
|
|
self.dataset_path = dataset_path
|
|
self.num_samples = num_samples
|
|
|
|
task_manager = TaskManager(
|
|
include_path=f"{os.path.dirname(__file__)}/lm_eval_tasks")
|
|
with self._patch_lm_eval():
|
|
self.task_dict = lm_eval.tasks.get_task_dict(
|
|
task_name, task_manager=task_manager)
|
|
|
|
# Adopted from https://github.com/EleutherAI/lm-evaluation-harness/blob/7f04db12d2f8e7a99a0830d99eb78130e1ba2122/lm_eval/evaluator.py#L290
|
|
def _adjust_config(task_dict, random_seed):
|
|
adjusted_task_dict = {}
|
|
for task_name, task_obj in task_dict.items():
|
|
if isinstance(task_obj, dict):
|
|
adjusted_task_dict = {
|
|
**adjusted_task_dict,
|
|
**{
|
|
task_name: _adjust_config(task_obj, random_seed)
|
|
},
|
|
}
|
|
else:
|
|
# NOTE: Few-shot random seed
|
|
task_obj.set_fewshot_seed(seed=random_seed)
|
|
adjusted_task_dict[task_name] = task_obj
|
|
|
|
# NOTE: Shuffle dataset
|
|
data = adjusted_task_dict[task_name].dataset
|
|
for split in data.keys():
|
|
data[split] = data[split].shuffle(random_seed)
|
|
|
|
return adjusted_task_dict
|
|
|
|
self.task_dict = _adjust_config(self.task_dict, random_seed)
|
|
|
|
@contextmanager
|
|
def _patch_lm_eval(self):
|
|
from pathlib import Path
|
|
|
|
import lm_eval
|
|
import lm_eval.tasks
|
|
|
|
# Patch Path.relative_to to handle custom task paths outside lm_eval/tasks
|
|
# This is needed with lm_eval>=0.4.9.2 with new function pretty_print_task (a local function inside
|
|
# get_task_dict) calls yaml_path.relative_to(lm_eval_tasks_path) which fails
|
|
# when the yaml is from tensorrt_llm/evaluate/lm_eval_tasks
|
|
original_relative_to = Path.relative_to
|
|
|
|
def _patched_relative_to(self, other, *args, **kwargs):
|
|
try:
|
|
return original_relative_to(self, other, *args, **kwargs)
|
|
except ValueError:
|
|
# Return absolute path if relative_to fails (path not under base)
|
|
return self
|
|
|
|
Path.relative_to = _patched_relative_to
|
|
|
|
# Optionally patch dataset_path if provided
|
|
original_post_init = None
|
|
if self.dataset_path is not None:
|
|
original_post_init = lm_eval.api.task.TaskConfig.__post_init__
|
|
|
|
def _patched_post_init(task_config, *args, **kwargs):
|
|
task_config.dataset_path = self.dataset_path
|
|
original_post_init(task_config, *args, **kwargs)
|
|
|
|
lm_eval.api.task.TaskConfig.__post_init__ = _patched_post_init
|
|
|
|
try:
|
|
yield
|
|
finally:
|
|
Path.relative_to = original_relative_to
|
|
if original_post_init is not None:
|
|
lm_eval.api.task.TaskConfig.__post_init__ = original_post_init
|
|
|
|
def generate_samples(self) -> Iterable[tuple]:
|
|
raise NotImplementedError()
|
|
|
|
def compute_score(self, outputs: List[RequestOutput], references: List[str],
|
|
*auxiliaries) -> float:
|
|
raise NotImplementedError()
|
|
|
|
def evaluate(self,
|
|
llm: Union[LLM, PyTorchLLM],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
streaming: bool = False,
|
|
scores_filter: str = None,
|
|
model_type: str = None,
|
|
is_force_single_image: bool = False) -> float:
|
|
import lm_eval
|
|
lm_cls = MultimodalLmEvalWrapper if self.MULTIMODAL else LmEvalWrapper
|
|
results = lm_eval.evaluate(
|
|
lm=lm_cls(llm,
|
|
sampling_params=sampling_params,
|
|
streaming=streaming,
|
|
chat_template_kwargs=self.chat_template_kwargs,
|
|
model_type=model_type,
|
|
is_force_single_image=is_force_single_image),
|
|
task_dict=self.task_dict,
|
|
limit=self.num_samples,
|
|
apply_chat_template=self.apply_chat_template,
|
|
fewshot_as_multiturn=self.fewshot_as_multiturn,
|
|
system_instruction=self.system_prompt)
|
|
# Normalize scores to range 0~100
|
|
scores = results["results"][self.task_name]
|
|
for metric in scores.keys():
|
|
if isinstance(scores[metric], (float, int)):
|
|
scores[metric] *= 100
|
|
logger.info(
|
|
f"lm-eval {self.task_name} results (scores normalized to range 0~100):\n{lm_eval.utils.make_table(results)}"
|
|
)
|
|
if scores_filter is not None:
|
|
result_acc = results["results"][self.task_name][scores_filter]
|
|
logger.info(
|
|
f"lm-eval {self.task_name} {scores_filter} accuracy: {result_acc:.2f}"
|
|
)
|
|
else:
|
|
result_acc = np.mean(
|
|
[acc for m, acc in scores.items() if "_stderr" not in m])
|
|
logger.info(
|
|
f"lm-eval {self.task_name} average accuracy: {result_acc:.2f}")
|
|
return result_acc
|
|
|
|
@classmethod
|
|
def command_harness(cls, ctx, **kwargs):
|
|
llm: Union[LLM, PyTorchLLM] = ctx.obj
|
|
|
|
evaluator = cls(dataset_path=kwargs.pop("dataset_path", None),
|
|
num_samples=kwargs.pop("num_samples", None),
|
|
random_seed=kwargs.pop("random_seed", 0),
|
|
apply_chat_template=kwargs.pop("apply_chat_template",
|
|
False),
|
|
fewshot_as_multiturn=kwargs.pop("fewshot_as_multiturn",
|
|
False),
|
|
system_prompt=kwargs.pop("system_prompt", None),
|
|
is_multimodal=kwargs.pop("is_multimodal", False),
|
|
chat_template_kwargs=kwargs.pop("chat_template_kwargs",
|
|
None))
|
|
sampling_params = SamplingParams(
|
|
max_tokens=kwargs.pop("max_output_length"),
|
|
truncate_prompt_tokens=kwargs.pop("max_input_length"),
|
|
stop=kwargs.pop("stop", None))
|
|
evaluator.evaluate(llm, sampling_params)
|
|
llm.shutdown()
|
|
|
|
|
|
class GSM8K(LmEvalEvaluator):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__("gsm8k", **kwargs)
|
|
|
|
@click.command("gsm8k")
|
|
@click.option("--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to GSM8K dataset. "
|
|
"If unspecified, the dataset is downloaded from HF hub.")
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option("--apply_chat_template",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Whether to apply chat template.")
|
|
@click.option(
|
|
"--chat_template_kwargs",
|
|
type=str,
|
|
default=None,
|
|
callback=lambda ctx, param, value: json.loads(value) if value else None,
|
|
help=
|
|
'Chat template kwargs as JSON string, e.g., \'{"thinking_budget": 0}\'')
|
|
@click.option("--fewshot_as_multiturn",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Apply fewshot as multiturn.")
|
|
@click.option("--system_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="System prompt.")
|
|
@click.option("--max_input_length",
|
|
type=int,
|
|
default=4096,
|
|
help="Maximum prompt length.")
|
|
@click.option("--max_output_length",
|
|
type=int,
|
|
default=256,
|
|
help="Maximum generation length.")
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, **kwargs) -> None:
|
|
if kwargs.get("fewshot_as_multiturn", False):
|
|
assert kwargs.get(
|
|
"apply_chat_template", False
|
|
), "apply_chat_template must be True when fewshot_as_multiturn is True"
|
|
GSM8K.command_harness(ctx, **kwargs)
|
|
|
|
|
|
class GPQADiamond(LmEvalEvaluator):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__("gpqa_diamond_cot_zeroshot_aa", **kwargs)
|
|
|
|
@click.command("gpqa_diamond")
|
|
@click.option("--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to GPQA dataset. "
|
|
"If unspecified, the dataset is downloaded from HF hub.")
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option("--apply_chat_template",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Whether to apply chat template.")
|
|
@click.option(
|
|
"--chat_template_kwargs",
|
|
type=str,
|
|
default=None,
|
|
callback=lambda ctx, param, value: json.loads(value) if value else None,
|
|
help=
|
|
'Chat template kwargs as JSON string, e.g., \'{"thinking_budget": 0}\'')
|
|
@click.option("--system_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="System prompt.")
|
|
@click.option("--max_input_length",
|
|
type=int,
|
|
default=4096,
|
|
help="Maximum prompt length.")
|
|
@click.option("--max_output_length",
|
|
type=int,
|
|
default=32768,
|
|
help="Maximum generation length.")
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, **kwargs) -> None:
|
|
GPQADiamond.command_harness(ctx, **kwargs)
|
|
|
|
|
|
class GPQAMain(LmEvalEvaluator):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__("gpqa_main_cot_zeroshot_aa", **kwargs)
|
|
|
|
@click.command("gpqa_main")
|
|
@click.option("--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to GPQA dataset. "
|
|
"If unspecified, the dataset is downloaded from HF hub.")
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option("--apply_chat_template",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Whether to apply chat template.")
|
|
@click.option(
|
|
"--chat_template_kwargs",
|
|
type=str,
|
|
default=None,
|
|
callback=lambda ctx, param, value: json.loads(value) if value else None,
|
|
help=
|
|
'Chat template kwargs as JSON string, e.g., \'{"thinking_budget": 0}\'')
|
|
@click.option("--system_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="System prompt.")
|
|
@click.option("--max_input_length",
|
|
type=int,
|
|
default=4096,
|
|
help="Maximum prompt length.")
|
|
@click.option("--max_output_length",
|
|
type=int,
|
|
default=32768,
|
|
help="Maximum generation length.")
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, **kwargs) -> None:
|
|
GPQAMain.command_harness(ctx, **kwargs)
|
|
|
|
|
|
class GPQAExtended(LmEvalEvaluator):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__("gpqa_extended_cot_zeroshot_aa", **kwargs)
|
|
|
|
@click.command("gpqa_extended")
|
|
@click.option("--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to GPQA dataset. "
|
|
"If unspecified, the dataset is downloaded from HF hub.")
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option("--apply_chat_template",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Whether to apply chat template.")
|
|
@click.option(
|
|
"--chat_template_kwargs",
|
|
type=str,
|
|
default=None,
|
|
callback=lambda ctx, param, value: json.loads(value) if value else None,
|
|
help=
|
|
'Chat template kwargs as JSON string, e.g., \'{"thinking_budget": 0}\'')
|
|
@click.option("--system_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="System prompt.")
|
|
@click.option("--max_input_length",
|
|
type=int,
|
|
default=4096,
|
|
help="Maximum prompt length.")
|
|
@click.option("--max_output_length",
|
|
type=int,
|
|
default=32768,
|
|
help="Maximum generation length.")
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, **kwargs) -> None:
|
|
GPQAExtended.command_harness(ctx, **kwargs)
|
|
|
|
|
|
class MMMU(LmEvalEvaluator):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__("mmmu_val", **kwargs)
|
|
|
|
@click.command("mmmu")
|
|
@click.option("--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path to MMMU dataset. "
|
|
"If unspecified, the dataset is downloaded from HF hub.")
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option(
|
|
"--chat_template_kwargs",
|
|
type=str,
|
|
default=None,
|
|
callback=lambda ctx, param, value: json.loads(value) if value else None,
|
|
help=
|
|
'Chat template kwargs as JSON string, e.g., \'{"thinking_budget": 0}\'')
|
|
@click.option(
|
|
"--system_prompt",
|
|
type=str,
|
|
default=None,
|
|
help=
|
|
"The system prompt to be added on the prompt. If specified, it will add {'role': 'system', 'content': system_prompt} to the prompt."
|
|
)
|
|
@click.option("--max_input_length",
|
|
type=int,
|
|
default=8192,
|
|
help="Maximum prompt length.")
|
|
@click.option(
|
|
"--max_output_length",
|
|
type=int,
|
|
default=
|
|
512, # NOTE: https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/tasks/mmmu/_template_yaml#L13
|
|
help="Maximum generation length.")
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, **kwargs) -> None:
|
|
# NOTE: MMMU is a multimodal task, so we need to set the is_multimodal and apply_chat_template flags to True
|
|
kwargs["is_multimodal"] = True
|
|
kwargs["apply_chat_template"] = True
|
|
kwargs[
|
|
"stop"] = "<|endoftext|>" # NOTE: https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/tasks/mmmu/_template_yaml#L10
|
|
MMMU.command_harness(ctx, **kwargs)
|
|
|
|
|
|
class LongBenchV1(LmEvalEvaluator):
|
|
"""
|
|
LongBench v1 evaluation via lm-evaluation-harness.
|
|
|
|
Notes:
|
|
- In lm-eval, `longbench` is typically a *group task* that expands into many
|
|
subtasks. The base `LmEvalEvaluator.evaluate()` assumes a single task
|
|
key exists in `results["results"][task_name]`, so we override evaluation
|
|
to aggregate over subtasks.
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__("longbench", **kwargs)
|
|
|
|
@staticmethod
|
|
def _flatten_task_dict(task_dict: dict) -> List[str]:
|
|
names: List[str] = []
|
|
for k, v in task_dict.items():
|
|
if isinstance(v, dict):
|
|
names.extend(LongBenchV1._flatten_task_dict(v))
|
|
else:
|
|
names.append(k)
|
|
return names
|
|
|
|
@staticmethod
|
|
def _get_group_score(metrics: Dict[str, Any],
|
|
*,
|
|
preferred_filter: str = "none") -> Optional[float]:
|
|
"""
|
|
lm-eval stores group metrics as "<metric>,<filter>" (e.g., "score,none").
|
|
Prefer "score,none" (matches printed table), otherwise accept any
|
|
"score,<filter>" key.
|
|
"""
|
|
if not isinstance(metrics, dict):
|
|
return None
|
|
|
|
preferred_key = f"score,{preferred_filter}"
|
|
v = metrics.get(preferred_key, None)
|
|
if isinstance(v, (int, float)):
|
|
return float(v)
|
|
|
|
return None
|
|
|
|
def evaluate(self,
|
|
llm: Union[LLM, PyTorchLLM],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
streaming: bool = False) -> float:
|
|
import lm_eval
|
|
|
|
lm_cls = MultimodalLmEvalWrapper if self.MULTIMODAL else LmEvalWrapper
|
|
results = lm_eval.evaluate(
|
|
lm=lm_cls(llm,
|
|
sampling_params=sampling_params,
|
|
streaming=streaming,
|
|
chat_template_kwargs=self.chat_template_kwargs),
|
|
task_dict=self.task_dict,
|
|
limit=self.num_samples,
|
|
apply_chat_template=self.apply_chat_template,
|
|
fewshot_as_multiturn=self.fewshot_as_multiturn,
|
|
system_instruction=self.system_prompt)
|
|
|
|
logger.info(
|
|
f"lm-eval {self.task_name} results:\n{lm_eval.utils.make_table(results)}"
|
|
)
|
|
|
|
# LongBench is a group task in lm-eval. lm-eval already computes subgroup
|
|
# "score" values (e.g., `longbench_fewshot`, `longbench_single`, ...).
|
|
# To keep this implementation simple and aligned with the printed table,
|
|
# we compute the final LongBench score as the unweighted mean of subgroup
|
|
# scores.
|
|
group_results: Dict[str, Dict[str, Any]] = results.get("groups", {})
|
|
subgroup_names = results.get("group_subtasks",
|
|
{}).get(self.task_name, [])
|
|
if not subgroup_names:
|
|
raise KeyError(
|
|
f"lm-eval did not provide subgroup list for group '{self.task_name}'. "
|
|
"Expected `results['group_subtasks'][task_name]` to exist.")
|
|
|
|
subgroup_scores: List[float] = []
|
|
missing: List[str] = []
|
|
for name in subgroup_names:
|
|
m = group_results.get(name, None)
|
|
score = self._get_group_score(m)
|
|
if score is None:
|
|
missing.append(name)
|
|
else:
|
|
subgroup_scores.append(score)
|
|
|
|
if not subgroup_scores:
|
|
raise KeyError(
|
|
f"lm-eval did not provide subgroup 'score' metrics for '{self.task_name}'. "
|
|
f"Missing subgroups: {missing[:10]}")
|
|
|
|
result_acc = float(np.mean(subgroup_scores)) * 100
|
|
logger.info(
|
|
f"lm-eval {self.task_name} average 'score' across {len(subgroup_scores)} subgroups: {result_acc:.2f}"
|
|
)
|
|
return result_acc
|
|
|
|
@click.command("longbench_v1")
|
|
@click.option(
|
|
"--dataset_path",
|
|
type=str,
|
|
default=None,
|
|
help=
|
|
"The path to LongBench dataset. If unspecified, the dataset is downloaded from HF hub."
|
|
)
|
|
@click.option(
|
|
"--num_samples",
|
|
type=int,
|
|
default=None,
|
|
help="Number of samples to run the evaluation; None means full dataset."
|
|
)
|
|
@click.option("--random_seed",
|
|
type=int,
|
|
default=0,
|
|
help="Random seed for dataset processing.")
|
|
@click.option("--apply_chat_template",
|
|
type=click.BOOL,
|
|
default=True,
|
|
show_default=True,
|
|
help="Whether to apply chat template.")
|
|
@click.option(
|
|
"--chat_template_kwargs",
|
|
type=str,
|
|
default=None,
|
|
callback=lambda ctx, param, value: json.loads(value) if value else None,
|
|
help=
|
|
'Chat template kwargs as JSON string, e.g., \'{"thinking_budget": 0}\'')
|
|
@click.option("--system_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="System prompt.")
|
|
@click.pass_context
|
|
@staticmethod
|
|
def command(ctx, **kwargs) -> None:
|
|
llm: Union[LLM, PyTorchLLM] = ctx.obj
|
|
|
|
evaluator = LongBenchV1(
|
|
dataset_path=kwargs.pop("dataset_path", None),
|
|
num_samples=kwargs.pop("num_samples", None),
|
|
random_seed=kwargs.pop("random_seed", 0),
|
|
apply_chat_template=kwargs.pop("apply_chat_template", True),
|
|
system_prompt=kwargs.pop("system_prompt", None),
|
|
chat_template_kwargs=kwargs.pop("chat_template_kwargs", None))
|
|
|
|
# Let lm-eval task configs control sampling via gen_kwargs.
|
|
sampling_params = None
|
|
|
|
evaluator.evaluate(llm, sampling_params)
|
|
llm.shutdown()
|